Parasitology Research

, Volume 117, Issue 12, pp 3965–3978 | Cite as

Evaluation of Plasmodium vivax isolates in Thailand using polymorphic markers Plasmodium merozoite surface protein (PvMSP) 1 and PvMSP3

  • Nutnicha Suphakhonchuwong
  • Wanna Chaijaroenkul
  • Kanchana Rungsihirunrat
  • Kesara Na-Bangchang
  • Jiraporn KuesapEmail author
Original Paper


Malaria is a significant public health problem in several tropical countries including Thailand. The prevalence of Plasmodium vivax infection has been increasing in the past decades. Plasmodium vivax merozoite surface protein (PvMSP) gene encodes a malaria vaccine candidate antigen. Its polymorphic nature leads to antigenic variation, the barrier for vaccine development, drug resistance, and potential for multiple-clone infections within the malaria patients. The objective of this study was to investigate the genetic diversity of PvMSP1 and PvMSP3 gene in P. vivax populations in Thailand. A total of 100 P. vivax isolates collected from the western (Kanchanaburi and Tak Provinces) and southern (Ranong Provinces) regions along the Thai-Myanmar border were analyzed using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Analysis of the F1, F2, and F3 regions of PvMSP1 revealed 5, 2, and 3 allelic variants, respectively. Three major types of PvMSP3-α and two major types of PvMSP3-β were identified based on the PCR product sizes. After digestion with restriction enzymes, 29, 25, 26, and 18 patterns were distinguished by RFLP for PvMSP1 (F2, Alu I), PvMSP1 (F2, Mnl I), PvMSP3-α, and PvMSP3-β, respectively. Combination of each family variant (PvMSP1 and PvMSP3) resulted in high genetic polymorphism of P. vivax population. Additionally, using PvMSP1 polymorphic marker revealed a significant association between multiple-genotype infections and P. vivax parasitemia. The results strongly supported that P. vivax populations in the endemic areas along the Thai-Myanmar border are highly diverse.


Plasmodium vivax Merozoite surface protein 1 (MSP1) Merozoite surface protein 3 (MSP3) Polymorphism 


Funding information

The study was supported by the national research council of Thailand and Thammasat University with Contract Nos. 040/2557 and 036/2558. KN and WC were supported by the Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma of Thammasat University, the National Research Council of Thailand (NRCT), and the National Research University Project of Thailand (NRU), Office of Higher Education Commission of Thailand.

Compliance with ethical standards

Ethics approval and consent to participate

The procedure of this study was approved by the Human Ethical Review Board of Thammasat University (no. 110/2556). All participants wrote the informed consents for participating in this study, and the data was nameless with no individual names of participants captured.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ak M et al (1998) Humoral immune responses against Plasmodium vivax MSP1 in humans living in an endemic malaria area in Flores, Indonesia. Southeast Asian J Trop Med Public Health 29:685–691PubMedGoogle Scholar
  2. Audran R et al (2005) Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect Immun 73:8017–8026. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barber BE et al (2015) Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria. PLoS Pathog 11:e1004558. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bruce MC, Galinski MR, Barnwell JW, Snounou G, Day KP (1999) Polymorphism at the merozoite surface protein-3alpha locus of Plasmodium vivax: global and local diversity. Am J Trop Med Hyg 61:518–525CrossRefGoogle Scholar
  5. Conroy AL et al (2010) Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case-control study. PLoS One 5:e15291. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cui L et al (2003) Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand. Am J Trop Med Hyg 68:613–619CrossRefGoogle Scholar
  7. de Jong GM, Slager JJ, Verbon A, van Hellemond JJ, van Genderen PJJ (2016) Systematic review of the role of angiopoietin-1 and angiopoietin-2 in Plasmodium species infections: biomarkers or therapeutic targets? Malar J 15:581. CrossRefPubMedPubMedCentralGoogle Scholar
  8. de Roode JC, Helinski ME, Anwar MA, Read AF (2005a) Dynamics of multiple infections and within-host competition in genetically diverse malaria infections. Am Nat 166:531–542. CrossRefPubMedGoogle Scholar
  9. de Roode JC et al (2005b) Virulence and competitive ability in genetically diverse malaria infections. Proc Natl Acad Sci U S A 102:7624–7628. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Espinosa AM et al (2003) Expression, polymorphism analysis, reticulocyte binding and serological reactivity of two Plasmodium vivax MSP-1 protein recombinant fragments. Vaccine 21:1033–1043CrossRefGoogle Scholar
  11. Galinski MR, Ingravallo P, Corredor-Medina C, Al-Khedery B, Povoa M, Barnwell JW (2001) Plasmodium vivax merozoite surface proteins-3beta and-3gamma share structural similarities with P. vivax merozoite surface protein-3alpha and define a new gene family. Mol Biochem Parasitol 115:41–53CrossRefGoogle Scholar
  12. Garzon-Ospina D, Romero-Murillo L, Tobon LF, Patarroyo MA (2011) Low genetic polymorphism of merozoite surface proteins 7 and 10 in Colombian Plasmodium vivax isolates. Infect Genet Evol 11:528–531. CrossRefPubMedGoogle Scholar
  13. Gomez A, Suarez CF, Martinez P, Saravia C, Patarroyo MA (2006) High polymorphism in Plasmodium vivax merozoite surface protein-5 (MSP5). Parasitology 133:661–672. CrossRefPubMedGoogle Scholar
  14. Gupta P, Pande V, Eapen A, Singh V (2013) Genotyping of MSP3beta gene in Indian Plasmodium vivax. J Vector Borne Dis 50:197–201PubMedGoogle Scholar
  15. Hamblin MT, Di Rienzo A (2000) Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet 66:1669–1679. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hisaeda H, Saul A, Reece JJ, Kennedy MC, Long CA, Miller LH, Stowers AW (2002) Merozoite surface protein 3 and protection against malaria in Aotus nancymai monkeys. J Infect Dis 185:657–664. CrossRefPubMedGoogle Scholar
  17. Imirzalioglu C,  Soydan N,  Schaller M,  Bretzel RG, Chakraborty T, Domann E (2006) Diagnosis of mixed Plasmodium malariae and P. vivax infection in a development aid volunteer by examination of bone-marrow specimens by real-time PCR. J Clin Microbiol 44(6):2307–2310CrossRefGoogle Scholar
  18. Imwong M et al (2005) Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J 4:20. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jiang J, Barnwell J, Meyer E, Galinski M (2013) Plasmodium vivax merozoite surface protein-3 (PvMSP3): expression of an 11 member multigene family in blood-stage parasites. PLoS One 8:e63888. CrossRefGoogle Scholar
  20. Jones TR et al (2001) Protection of Aotus monkeys by Plasmodium falciparum EBA-175 region II DNA prime-protein boost immunization regimen. J Infect Dis 183:303–312. CrossRefPubMedGoogle Scholar
  21. Kang JM et al (2014) Polymorphic patterns of the merozoite surface protein-3beta in Korean isolates of Plasmodium vivax. Malar J 13:104. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Khan SN et al (2014) PCR/RFLP-based analysis of genetically distinct Plasmodium vivax population of Pvmsp-3alpha and Pvmsp-3beta genes in Pakistan. Malar J 13:355. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kibria MG, Elahi R, Mohon AN, Khan WA, Haque R, Alam MS (2015) Genetic diversity of Plasmodium vivax in clinical isolates from Bangladesh. Malar J 14:267. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kim JR et al (2006) Genetic diversity of Plasmodium vivax in Kolkata, India. Malar J 5:71. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kirchgatter K, del Portillo HA (1998) Molecular analysis of Plasmodium vivax relapses using the MSP1 molecule as a genetic marker. J Infect Dis 177:511–515CrossRefGoogle Scholar
  26. Koepfli C et al (2009) Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. J Infect Dis 199:1074–1080. CrossRefPubMedGoogle Scholar
  27. Kosaisavee V, Hastings I, Craig A, Lek-Uthai U (2011) The genetic polymorphism of Plasmodium vivax genes in endemic regions of Thailand. Asian Pac J Trop Med 4:931–936. CrossRefPubMedGoogle Scholar
  28. Li YC, Wang GZ, Meng F, Zeng W, He CH, Hu XM, Wang SQ (2015) Genetic diversity of Plasmodium vivax population before elimination of malaria in Hainan Province, China. Malar J 14:78. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lima-Junior JC et al (2011) B cell epitope mapping and characterization of naturally acquired antibodies to the Plasmodium vivax merozoite surface protein-3alpha (PvMSP-3alpha) in malaria-exposed individuals from Brazilian Amazon. Vaccine 29:1801–1811. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lima-Junior JC et al (2012) Influence of HLA-DRB1 and HLA-DQB1 alleles on IgG antibody response to the P. vivax MSP-1, MSP-3alpha and MSP-9 in individuals from Brazilian endemic area. PloS One 7:e36419. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Machado Siqueira A et al (2012) Spleen rupture in a case of untreated Plasmodium vivax infection. PLoS Negl Trop Dis 6(12):e1934CrossRefGoogle Scholar
  32. Maneerattanasak S, Gosi P, Krudsood S, Tongshoob J, Lanteri CA, Snounou G, Khusmith S (2016) Genetic diversity among Plasmodium vivax isolates along the Thai–Myanmar border of Thailand. Malar J 15:75. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Marlar T, Myat Phone K, Aye Yu S, Khaing Khaing G, Ma S, Myint O (1995) Development of resistance to chloroquine by Plasmodium vivax in Myanmar. Trans R Soc Trop Med Hyg 89:307–308CrossRefGoogle Scholar
  34. Moon SU et al (2009) High frequency of genetic diversity of Plasmodium vivax field isolates in Myanmar. Acta Trop 109:30–36. CrossRefPubMedGoogle Scholar
  35. Pacheco MA, Lopez-Perez M, Vallejo AF, Herrera S, Arévalo-Herrera M, Escalante AA (2016) Multiplicity of infection and disease severity in Plasmodium vivax. PLoS Negl Trop Dis 10:e0004355. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Panichakul T, Sattabongkot J, Chotivanich K, Sirichaisinthop J, Cui L, Udomsangpetch R (2007) Production of erythropoietic cells in vitro for continuous culture of Plasmodium vivax. Int J Parasit 37:1551–1557. CrossRefGoogle Scholar
  37. Perera KL, Handunnetti SM, Holm I, Longacre S, Mendis K (1998) Baculovirus merozoite surface protein 1 C-terminal recombinant antigens are highly protective in a natural primate model for human Plasmodium vivax malaria. Infect Immun 66:1500–1506PubMedPubMedCentralGoogle Scholar
  38. Phyo AP et al (2011) Dihydroartemisinin-piperaquine versus chloroquine in the treatment of Plasmodium vivax malaria in Thailand: a randomized controlled trial. Clin Infect Dis 53:977–984. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Putaporntip C, Jongwutiwes S, Ferreira MU, Kanbara H, Udomsangpetch R, Cui L (2009) Limited global diversity of the Plasmodium vivax merozoite surface protein 4 gene. Infect Genet Evol 9:821–826. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Raza A, Ghanchi NK, Thaver AM, Jafri S, Beg MA (2013) Genetic diversity of Plasmodium vivax clinical isolates from southern Pakistan using pvcsp and pvmsp1 genetic markers. Malar J 12:16. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ru YX, Mao BY, Zhang FK, Pang TX, Zhao SX, Liu JH, Wickramasinghe SN (2009) Invasion of erythroblasts by : a new mechanism contributing to malarial anemia. Ultrastruct Pathol 33(5):236–242Google Scholar
  42. Rungsihirunrat K, Chaijaroenkul W, Siripoon N, Seugorn A, Na-Bangchang K (2011) Genotyping of polymorphic marker (MSP3alpha and MSP3beta) genes of Plasmodium vivax field isolates from malaria-endemic of Thailand. Trop Med Int Health 16:794–801. CrossRefPubMedGoogle Scholar
  43. Soares IS, Levitus G, Souza JM, Del Portillo HA, Rodrigues MM (1997) Acquired immune responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1 in individuals exposed to malaria. Infect Immun 65:1606–1614PubMedPubMedCentralGoogle Scholar
  44. Souza-Neiras WC et al (2010) Plasmodium vivax circumsporozoite genotypes: a limited variation or new subspecies with major biological consequences? Malar J 9:178. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Stanisic DI et al (2013) Naturally acquired immune responses to P. vivax merozoite surface protein 3α, and merozoite surface protein 9 are associated with reduced risk of P. vivax malaria in young Papua New Guinean children. PLoS Negl Trop Dis 7:e2498. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Thanh PV et al (2015) Confirmed Plasmodium vivax resistance to chloroquine in Central Vietnam. Antimicrob Agents Chemother 59:7411–7419. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, Cowman AF (2000) Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol 38:706–718CrossRefGoogle Scholar
  48. Valderrama-Aguirre A et al (2005) Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 PV200l: a potential malaria vaccine subunit. Am jJ Trop Med Hyg 73:16–24CrossRefGoogle Scholar
  49. Veron V, Legrand E, Yrinesi J, Volney B, Simon S, Carme B (2009) Genetic diversity of msp3alpha and msp1_b5 markers of Plasmodium vivax in French Guiana. Malar J 8:40. CrossRefPubMedPubMedCentralGoogle Scholar
  50. WHO (2014) Severe malaria. Trop Med Int Health 19(Suppl 1):7–131. CrossRefGoogle Scholar
  51. WHO (2016) World malaria report 2016. WHO Global malaria programmeGoogle Scholar
  52. Yang Z et al (2006) Genetic structures of geographically distinct Plasmodium vivax populations assessed by PCR/RFLP analysis of the merozoite surface protein 3beta gene. Acta Trop 100:205–212. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yeom JS et al (2008) Naturally acquired IgM antibody response to the C-terminal region of the merozoite surface protein 1 of Plasmodium vivax in Korea: use for serodiagnosis of vivax malaria. J Parasitol 94:1410–1414. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Allied Health SciencesThammasat UniversityPathumthaniThailand
  2. 2.Chulabhorn International College of MedicineThammasat UniversityPathumthaniThailand
  3. 3.College of Public Health SciencesChulalongkorn UniversityBangkokThailand

Personalised recommendations