Advertisement

Parasitology Research

, Volume 117, Issue 11, pp 3639–3652 | Cite as

Identification of a perchloric acid-soluble protein (PSP)-like ribonuclease from Trichomonas vaginalis

  • Alma Villalobos-Osnaya
  • Georgina Garza-Ramos
  • Iris N. Serratos
  • César Millán-Pacheco
  • Arturo González-Robles
  • Rossana Arroyo
  • Laura Itzel Quintas-Granados
  • María Elizbeth Alvarez-Sanchez
Original Paper

Abstract

A perchloric acid-soluble protein (PSP), named here tv-psp1, was identified in Trichomonas vaginalis. It is expressed under normal culture conditions according to expressed sequence tag (EST) analysis. On the other hand, Tv-PSP1 protein was identified by mass spectrometry with a 40% of identity to human PSP (p14.1). Polyclonal antibodies against recombinant Tv-PSP1 (rTv-PSP1) recognized a single band at 13.5 kDa in total protein parasite extract by SDS-PAGE and a high molecular weight band analyzed by native PAGE. Structural analysis of Tv-PSP1, using dynamic light scattering, size exclusion chromatography, and circular dichroism spectroscopy, showed a trimeric structure stable at 7 M urea with 38% α-helix and 14% β-sheet in solution and a molecular weight of 40.5 kD. Tv-PSP1 models were used to perform dynamic simulations over 100 ns suggesting a stable homotrimeric structure. Tv-PSP1 was located in the nucleus, cytoplasm, and hydrogenosomes of T. vaginalis, and the in silico analysis by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) showed interactions with RNA binding proteins. The preliminary results of RNA degradation analysis with the recombinant Tv-PSP1 showed RNA partial deterioration suggesting a possible putative ribonuclease function.

Keywords

Trichomonas vaginalis Perchloric acid-soluble proteins Molecular dynamic Cellular localization Homotrimeric structure Size exclusion chromatographic 

Notes

Acknowledgements

We acknowledge Biol. Anel Edith Lagunes Guillén, M.Sc. Laura Isabel Vazquez Carrillo, QFB Leticia Avila-González, and Brenda Herrera Villalobos for their technical assistance.

Funding information

This work was supported by UACM and a grant from CONACyT (83808) Mexico (to M.E.A.S.). AVO was supported by a scholarship from ICyTDF (ICyTDF/SRI/70/2011).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2018_6065_MOESM1_ESM.doc (312 kb)
ESM 1 (DOC 312 kb)

References

  1. Alvarez-Sanchez ME, Avila-Gonzalez L, Becerril-Garcia C, Fattel-Facenda LV, Ortega-Lopez J, Arroyo R (2000) A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity. Microb Pathog 28:193–202.  https://doi.org/10.1006/mpat.1999.0336 CrossRefPubMedGoogle Scholar
  2. Antonenkov VD, Ohlmeier S, Sormunen RT, Hiltunen JK (2007) UK114, a YjgF/Yer057p/UK114 family protein highly conserved from bacteria to mammals, is localized in rat liver peroxisomes. Biochem Biophys Res Commun 357:252–257.  https://doi.org/10.1016/j.bbrc.2007.03.136 CrossRefPubMedGoogle Scholar
  3. Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Morrison HG, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoeckert CJ, Sullivan S, Treatman C, Wang H (2009) GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res 37:D526–D530.  https://doi.org/10.1093/nar/gkn631 CrossRefPubMedGoogle Scholar
  4. Bartorelli A, Bussolati B, Millesimo M, Gugliotta P, Bussolati G (1996) Antibody-dependent cytotoxic activity on human cancer cells expressing UK 114 tumor membrane antigen. Int J Oncol 8:543–548PubMedGoogle Scholar
  5. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242.  https://doi.org/10.1093/nar/28.1.235 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217.  https://doi.org/10.1002/jcc.540040211 CrossRefGoogle Scholar
  7. Burman JD, Stevenson CE, Sawers RG, Lawson DM (2007) The crystal structure of Escherichia coli TdcF, a member of the highly conserved YjgF/YER057c/UK114 family. BMC Struct Biol 7:1CrossRefGoogle Scholar
  8. Bussolati G, Geuna M, Bussolati B, Millesimo M, Botta M, Bartorelli A (1997) Cytolytic and tumor inhibitory antibodies against UK114 protein in the sera of cancer patients. Int J Oncol 10:779–785PubMedGoogle Scholar
  9. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UCM, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Muller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212CrossRefGoogle Scholar
  10. Carvajal-Gamez B, Arroyo R, Lira R, López-Camarillo C, Alvarez-Sánchez M (2010) Identification of two novel Trichomonas vaginaliseif-5a genes. Infect Genet Evol 10:284–291CrossRefGoogle Scholar
  11. Ceciliani F, Faotto L, Negri A, Colombo I, Berra B, Bartorelli A, Ronchi S (1996) The primary structure of UK 114 tumor antigen. FEBS Lett 393:147–150.  https://doi.org/10.1016/0014-5793(96)00850-2 CrossRefPubMedGoogle Scholar
  12. Cui J, Das S, Smith TF, Samuelson J (2010) Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes. PLoS Negl Trop Dis 4:e782CrossRefGoogle Scholar
  13. Deaconescu AM, Roll-Mecak A, Bonanno JB, Gerchman SE, Kycia H, Studier FW, Burley SK (2002) X-ray structure of Saccharomyces cerevisiae homologous mitochondrial matrix factor 1 (Hmf1). Proteins: Struct, Funct, Bioinf 48:431–436.  https://doi.org/10.1002/prot.10151 CrossRefGoogle Scholar
  14. Dhawan LLB, Pytlak A, Kulshrestha S, Blaxall BC, Taubman MB (2012) Y-box binding protein 1 and RNase UK114 mediate monocyte chemoattractant protein 1 mRNA stability in vascular smooth muscle cells. Mol Cell Biol 32:3768–3775.  https://doi.org/10.1128/MCB.00846-12 CrossRefPubMedPubMedCentralGoogle Scholar
  15. El-Shazly AM, El-Naggar HM, Soliman M, El-Negeri M, El-Nemr HE, Handousa AE, Morsy TA (2001) A study on Trichomoniasis vaginalis and female infertility. J Egypt Soc Parasitol 31:545–553PubMedGoogle Scholar
  16. Enos-Berlage JL, Langendorf MJ, Downs DM (1998) Complex metabolic phenotypes caused by a mutation in yjgF, encoding a member of the highly conserved YER057c/YjgF family of proteins. J Bacteriol 180:6519–6528PubMedPubMedCentralGoogle Scholar
  17. Farkas A, Nardai G, Csermely P, Tompa P, Friedrich P (2004) DUK114, the Drosophila ortologue of bovine brain calpain activator protein, is a molecular chaperone. Biochem J 383:165–170CrossRefGoogle Scholar
  18. da Fonseca Pires S, Fialho LC Jr, Silva SO, Melo MN, de Souza CC, Tafuri WL, Bruna Romero O, de Andrade HM (2014) Identification of virulence factors in Leishmania infantum strains by a proteomic approach. J Proteome Res 13:1860–1872.  https://doi.org/10.1021/pr400923g CrossRefPubMedGoogle Scholar
  19. Ghezzo F, Berta GN, Bussolati B, Bosio A, Corvetti G, di Carlo F, Bussolati G, Guglielmone R, Bartorelli A (1999) Perchloric acid-soluble proteins from goat liver inhibit chemical carcinogenesis of Syrian hamster cheek-pouch carcinoma. Br J Cancer 79:54–58.  https://doi.org/10.1038/sj.bjc.6690011 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Goping G, Kuijpers G, Vinet R, Pollard HB (1996) Comparison of LR White and Unicryl as embedding media for light and electron immunomicroscopy of chromaffin cells. J Histochem Cytochem 44:289–295CrossRefGoogle Scholar
  21. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890.  https://doi.org/10.1038/nprot.2006.202 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Horváthová L, Šafaříková L, Basler M, Hrdý I, Campo NB, Shin JW, Huang KY, Huang PJ, Lin R, Tang P, Tachezy J (2012) Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome. Genome Biol Evol 4:1017–1029CrossRefGoogle Scholar
  23. Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145.  https://doi.org/10.1002/jcc.23354 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865.  https://doi.org/10.1002/jcc.20945 CrossRefPubMedGoogle Scholar
  25. Kanouchi H, Oka T, Asagi K, Tachibana H, Yamada* K (2000) Expression and cellular distribution of perchloric acid-soluble protein is dependent on the cell-proliferating states of NRK-52E cells. Cell Mol Life Sci 57:1103–1108.  https://doi.org/10.1007/pl00000746 CrossRefPubMedGoogle Scholar
  26. Kanouchi H, Matsumoto M, Taga M, Yamada K, Oka T, Toné S, Minatogawa Y (2005) Nuclear transfer of perchloric acid-soluble protein by endoplasmic reticulum stressors. Protein Sci 14:2344–2349.  https://doi.org/10.1110/ps.051481105 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kim J-M, Yoshikawa H, Shirahige K (2001) A member of the YER057c/yjgf/Uk114 family links isoleucine biosynthesis and intact mitochondria maintenance in Saccharomyces cerevisiae. Genes Cells 6:507–517.  https://doi.org/10.1046/j.1365-2443.2001.00443.x CrossRefPubMedGoogle Scholar
  28. López-Rosas I, Marchat LA, Olvera BG, Guillen N, Weber C, Hernández de la Cruz O, Ruíz-García E, Astudillo-de la Vega H, López-Camarillo C (2014) Proteomic analysis identifies endoribonuclease EhL-PSP and EhRRP41 exosome protein as novel interactors of EhCAF1 deadenylase. J Proteome 111:59–73.  https://doi.org/10.1016/j.jprot.2014.06.019 CrossRefGoogle Scholar
  29. Manavalan P, Johnson WC Jr (1983) Sensitivity of circular dichroism to protein tertiary structure class. Nature 305:831–832.  https://doi.org/10.1038/305831a0 CrossRefGoogle Scholar
  30. Manjasetty BA et al (2004) Crystal structure of Homo sapiens protein hp14.5. Proteins: Struct, Funct, Bioinf 54:797–800CrossRefGoogle Scholar
  31. Mason PR, Gwanzura L (1990) Reduced lymphocyte responses to mitogens in natural and experimental trichomoniasis. Infect Immun 58:3553–3557PubMedPubMedCentralGoogle Scholar
  32. Melloni E, Michetti M, Salamino F, Pontremoli S (1998) Molecular and functional properties of a Calpain activator protein specific for μ-isoforms. J Biol Chem 273:12827–12831.  https://doi.org/10.1074/jbc.273.21.12827 CrossRefPubMedGoogle Scholar
  33. Mistiniene E, Luksa V, Sereikaite J, Naktinis V (2003) Oligomeric assembly and ligand binding of the members of protein family YER057c/YIL051c/YJGF. Bioconjug Chem 14:1243–1252CrossRefGoogle Scholar
  34. Miyakawa T, Lee WC, Hataco K, Kato Y, Sawano Y, Miyazono KN, Tonakura M (2006) Crystal structure of the YjgF/YER057c/Uk114 family protein from the hyperthermophilic archaeon Sulfolobus tokodaii strain. Proteins: Struct, Funct, Bioinf 62:557–561CrossRefGoogle Scholar
  35. Morishita R, Kawagoshi A, Sawasaki T, Madin K, Ogasawara T, Oka T, Endo Y (1999) Ribonuclease activity of rat liver Perchloric acid-soluble protein, a potent inhibitor of protein synthesis. J Biol Chem 274:20688–20692.  https://doi.org/10.1074/jbc.274.29.20688 CrossRefPubMedGoogle Scholar
  36. Oka T et al (1995) Isolation and characterization of a novel perchloric acid-soluble protein inhibiting cell-free protein synthesis. J Biochem Chem 270:30060–30067Google Scholar
  37. Oka T, Nishimoto Y, Sasagawa T, Kanouchi H, Kawasaki Y, Natori Y (1999) Production of functional rat liver PSP protein in Escherichia coli. Cell Mol Life Sci 55:131–134CrossRefGoogle Scholar
  38. Oxelmark E, Marchini A, Malanchi I, Magherini F, Jaquet L, Hajibagheri MAN, Blight KJ, Jauniaux JC, Tommasino M (2000) Mmf1p, a novel yeast mitochondrial protein conserved throughout evolution and involved in maintenance of the mitochondrial genome. Mol Cell Biol 20:7784–7797CrossRefGoogle Scholar
  39. Oyhenart J, Breccia JD (2014) Evidence for repeated gene duplications in Tritrichomonas foetus supported by EST analysis and comparison with the Trichomonas vaginalis genome. Vet Parasitol 206:267–276CrossRefGoogle Scholar
  40. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefPubMedGoogle Scholar
  41. Pu Y-G, Jiang YL, Ye XD, Ma XX, Guo PC, Lian FM, Teng YB, Chen Y, Zhou CZ (2011) Crystal structures and putative interface of Saccharomyces cerevisiae mitochondrial matrix proteins Mmf1 and Mam33. J Struct Biol 175:469–474CrossRefGoogle Scholar
  42. Quintas-Granados LI, Villalpando JL, Vázquez-Carrillo LI, Arroyo R, Mendoza-Hernández G, Álvarez-Sánchez ME (2013) TvMP50 is an immunogenic metalloproteinase during male trichomoniasis. Mol Cell Proteomics 12:1953–1964CrossRefGoogle Scholar
  43. Roy AKA, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738.  https://doi.org/10.1038/nprot.2010.5. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sasagawa T, Oka T, Tokumura A, Nishimoto Y, Muñoz S, Kuwahata M, Okita M, Tsuji H, Natori Y (1999) Analysis of the fatty acid components in a perchloric acid-soluble protein. Biochim Biophys Acta 1437:317–324CrossRefGoogle Scholar
  45. Servant FBC, Carrère S, Courcelle E, Gouzy J, Peyruc D, Kahn D (2002) ProDom: automated clustering of homologous domains. Brief Bioinform 3:246–251CrossRefGoogle Scholar
  46. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefGoogle Scholar
  47. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.  https://doi.org/10.1038/msb.2011.75 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sinha S, Rappu P, Lange S, Mäntsälä P, Zalkin H, Smith JL (1999) Crystal structure of Bacillus subtilis YabJ, a purine regulatory protein and member of the highly conserved YjgF family. Proc Natl Acad Sci 96:13074–13079CrossRefGoogle Scholar
  49. Su P, Feng T, Zhou X, Zhang S, Zhang Y, Cheng J’, Luo Y, Peng J, Zhang Z, Lu X, Zhang D, Liu Y (2015) Isolation of Rhp-PSP, a member of YER057c/YjgF/UK114 protein family with antiviral properties, from the photosynthetic bacterium Rhodopseudomonas palustris strain JSC-3b. Sci Rep 5:16121.  https://doi.org/10.1038/srep16121 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Thakur KG, Praveena T, Gopal B (2010) Mycobacterium tuberculosis Rv2704 is a member of the YjgF/YER057c/UK114 family. Proteins: Struct, Funct, Bioinf 78:773–778.  https://doi.org/10.1002/prot.22623 CrossRefGoogle Scholar
  51. Volz K (1999) A test case for structure-based functional assignment: the 1.2 Å crystal structure of the yjgF gene product from Escherichia coli. Protein Sci 8:2428–2437.  https://doi.org/10.1110/ps.8.11.2428 CrossRefPubMedPubMedCentralGoogle Scholar
  52. WHO (2012) Global prevalence and incidence of selected curable sexually transmitted infections overview and estimates. GenevaGoogle Scholar
  53. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8.  https://doi.org/10.1038/nmeth.3213 http://www.nature.com/nmeth/journal/v12/n1/abs/nmeth.3213.html#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alma Villalobos-Osnaya
    • 1
  • Georgina Garza-Ramos
    • 2
  • Iris N. Serratos
    • 3
  • César Millán-Pacheco
    • 4
  • Arturo González-Robles
    • 5
  • Rossana Arroyo
    • 5
  • Laura Itzel Quintas-Granados
    • 6
  • María Elizbeth Alvarez-Sanchez
    • 1
  1. 1.Posgrado en Ciencias GenómicasUniversidad Autónoma de la Ciudad de México (UACM)Ciudad de MexicoMexico
  2. 2.Departamento de Bioquímica, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MexicoMexico
  3. 3.Departamento de QuímicaUniversidad Autónoma MetropolitanaCiudad de MexicoMexico
  4. 4.Facultad de FarmaciaUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  5. 5.Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Ciudad de MexicoMexico
  6. 6.Universidad Mexiquense del Bicentenario, Unidad de Estudios Superiores TultitlanTultitlanMexico

Personalised recommendations