Parasitology Research

, Volume 117, Issue 11, pp 3591–3599 | Cite as

Environmental drivers of parasite load and species richness in introduced parakeets in an urban landscape

  • L. Ancillotto
  • V. Studer
  • T. Howard
  • V. S. Smith
  • E. McAlister
  • J. Beccaloni
  • F. Manzia
  • F. Renzopaoli
  • L. Bosso
  • D. RussoEmail author
  • E. Mori
Original Paper


Introduced species represent a threat to native wildlife worldwide, due to predation, competition, and disease transmission. Concurrent introduction of parasites may also add a new dimension of competition, i.e. parasite-mediated competition, through spillover and spillback dynamics. Urban areas are major hotspots of introduced species, but little is known about the effects of urban habitat structure on the parasite load and diversity of introduced species. Here, we investigated such environmental effects on the ectoparasite load, richness, and occurrence of spillback in two widespread invasive parakeets, Psittacula krameri and Myiopsitta monachus, in the metropolitan area of Rome, central Italy. We tested 231 parakeets and found that in both species parasite load was positively influenced by host abundance at local scale, while environmental features such as the amount of natural or urban habitats, as well as richness of native birds, influenced parasite occurrence, load, and richness differently in the two host species. Therefore, we highlight the importance of host population density and habitat composition in shaping the role of introduced parakeets in the spread of both native and introduced parasites, recommending the monitoring of urban populations of birds and their parasites to assess and manage the potential occurrence of parasite-mediated competition dynamics as well as potential spread of vector-borne diseases.


Ectoparasites Introduction Myiopsitta monachus Psittaciformes Psittacula krameri Urban ecology 



We thank all the people and volunteers from Lipu Wildlife Rescue Centre in Rome for their kind help in collecting data. Two reviewers made valuable comments on a previous ms version.

Funding information

Two authors (LA and EM) were funded by two Short Term Scientific Missions by the COST Action ES1304 “Parrotnet - European Network on Invasive Parakeets”.

Compliance with ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2018_6058_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19.1 kb)
436_2018_6058_MOESM2_ESM.docx (39 kb)
ESM 2 (DOCX 39.1 kb)
436_2018_6058_MOESM3_ESM.docx (39 kb)
ESM 3 (DOCX 39.3 kb)
436_2018_6058_MOESM4_ESM.docx (35 kb)
ESM 4 (DOCX 35.3 kb)
436_2018_6058_MOESM5_ESM.docx (35 kb)
ESM 5 (DOCX 34.8 kb)
436_2018_6058_MOESM6_ESM.docx (144 kb)
ESM 6 (DOCX 143 kb)


  1. Ancillotto L, Serangeli MT, Russo D (2013) Curiosity killed the bat: Domestic cats as bat predators. Mammalian Biology - Zeitschrift für Säugetierkunde 78 (5):369–373CrossRefGoogle Scholar
  2. Ancillotto L, Mazza G, Menchetti M, Mori E (2014) Host specificity of the badger’s flea (Paraceras melis) and first detection on a bat host. Parasitol Res 113:3909–3912CrossRefGoogle Scholar
  3. Ancillotto L, Strubbe D, Menchetti M, Mori E (2016) An overlooked invader? Ecological niche, invasion success and range dynamics of the Alexandrine parakeet in the invaded range. Biol Invasions 18:583–595CrossRefGoogle Scholar
  4. Appelt CW, Ward LC, Bender C, Fasenella J, van Vossen BJ, Knight L (2016) Examining potential relationships between monk parakeets (Myiopsitta monachus) and avian communities in an urban environment. Wilson J Ornith 128:556–566CrossRefGoogle Scholar
  5. Aramburú R, Calvo S, Alzugaray ME, Cicchino A (2003) Ectoparasitic load of monk parakeet (Myiopsitta monachus, Psittacidae) nestlings. Ornit Neotrop 14:415–418Google Scholar
  6. Baker AS (1999) Mites and ticks of domestic animals: an identification guide and information source. The Stationary Office, LondonGoogle Scholar
  7. Barbar F, Lambertucci SA (2018) The roles of leporid species that have been translocated: a review of their ecosystem effects as native and exotic species. Mam Rev CrossRefGoogle Scholar
  8. Batllori X, Nos R (1985) Presencia de la cotorrita gris (Myiopsitta monachus) y de la cotorrita de collar (Psittacula krameri) en el Area Metropolitana de Barcelona. Misc Zool 9:407–411Google Scholar
  9. Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett 12:20150623CrossRefPubMedGoogle Scholar
  10. Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506–519CrossRefGoogle Scholar
  11. Booth DT, Clayton DH, Block BA (1993) Experimental demonstration of the energetic cost of parasitism in free-ranging hosts. Proc R Soc Lond B 253:125–129CrossRefGoogle Scholar
  12. Bosso L, De Conno C, Russo D (2017) Modelling the Risk Posed by the Zebra Mussel Dreissena polymorpha: Italy as a Case Study. Environ Manag 60(2):304–313CrossRefGoogle Scholar
  13. Bowers MA, Breland B (1996) Foraging of gray squirrels on an urban-rural gradient: use of the GUD to assess anthropogenic impact. Ecol Appl 6:1135–1142CrossRefGoogle Scholar
  14. Briceño C, Surot D, González-Acuña D, Martínez FJ, Fredes F (2017) Parasitic survey on introduced monk parakeets (Myiopsitta monachus) in Santiago, Chile. Rev Bras Parasitol Vet 26:129–135CrossRefGoogle Scholar
  15. Butler CJ (2003) Population biology of the introduced Rose-ringed Parakeet Psittacula krameri in the UK. Doctoral dissertation, University of Oxford: OxfordGoogle Scholar
  16. Capinha C, Essl F, Seebens H, Moser D, Pereira HM (2015) The dispersal of alien species redefines biogeography in the Anthropocene. Science 348:1248–1251CrossRefGoogle Scholar
  17. Chapuis JL, Obolenskaya E, Pisanu B, Lissovsky A (2011) Datasheet on Tamias sibiricus. CABI, Invasive Species Compendium, WallingfordGoogle Scholar
  18. Cignini B, Zapparoli M (1996) Atlante degli uccelli nidificanti a Roma. Fratelli Palombi Editori, RomaGoogle Scholar
  19. Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110CrossRefGoogle Scholar
  20. Clayton DH, Drown DM (2001) Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera). J Parasitol 87:1291–1300CrossRefGoogle Scholar
  21. Clemants SE, Moore G (2003) Patterns of species diversity in eight northeastern United States cities. Urban Habitats 1:4–16Google Scholar
  22. Clergeau P, Vergnes A (2011) Bird feeders may sustain feral Rose-ringed parakeets Psittacula krameri in temperate Europe. Wildl Biol 17:248–252CrossRefGoogle Scholar
  23. Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733CrossRefGoogle Scholar
  24. Combes C (1991) Evolution of parasite life cycles. In: Toft C, Aeschlimann A, Bolis L (eds) Parasite–host associations: coexistence or conflict? Oxford University Press, Oxford, pp 62–82Google Scholar
  25. Comer JA, Paddock CD, Childs JE (2001) Urban zoonoses caused by Bartonella, Coxiella, Ehrlichia, and Rickettsia species. Vector Borne Zoonotic Dis 1:91–118CrossRefGoogle Scholar
  26. Covas L, Senar JC, Roque L, Quesada J (2017) Records of fatal attacks by rose-ringed parakeets Psittacula krameri on native avifauna. Rev Catal Ornitol 33:45–49Google Scholar
  27. Cox R, Stewart PD, Macdonald DW (1999) The ectoparasites of the European badger, Meles meles, and the behavior of the host-specific flea, Paraceras melis. J Insect Behav 12:245–265CrossRefGoogle Scholar
  28. da Silva AG, Eberhard JR, Wright TF et al (2010) Genetic evidence for high propagule pressure and long-distance dispersal in monk parakeet (Myiopsitta monachus) invasive populations. Mol Ecol 19:3336–3350CrossRefGoogle Scholar
  29. Dangoisse G (2009) Étude de la population de Conures veuves (Myiopsitta monachus) de Bruxelles-Capitale. Aves 46:57–69Google Scholar
  30. Delgado VCA, French K (2012) Parasite–bird interactions in urban areas: current evidence and emerging questions. Landsc Urban Plan 105:5–14CrossRefGoogle Scholar
  31. Di Santo M, Vignoli L, Battisti C, Bologna MA (2013) Feeding activity and space use of a naturalized population of monk parakeet, Myiopsitta monachus, in a Mediterranean urban area. Rev Ecol Terre Vie 68:275–282Google Scholar
  32. Di Santo M, Battisti C, Bologna MA (2016) Interspecific interactions in nesting and feeding urban sites among introduced monk parakeet (Myiopsitta monachus) and syntopic bird species. Ethol Ecol Evol 29:138–148CrossRefGoogle Scholar
  33. Domènech J, Carrillo J, Senar JC (2003) Population size of the Monk Parakeet (Myiopsitta monachus) in Catalonia. Rev Cat Ornitol 20:1–9Google Scholar
  34. Dunn AM, Hatcher MJ (2015) Parasites and biological invasions: parallels, interactions, and control. Trends Parasitol 31:189–199CrossRefGoogle Scholar
  35. Edelaar P, Roques S, Hobson EA (2015) Shared genetic diversity across the global invasive range of the monk parakeet suggests a common restricted geographic origin and the possibility of convergent selection. Mol Ecol 24:2164–2176CrossRefGoogle Scholar
  36. Escallón C, Becker MH, Walke JB, Jensen RV, Cormier G, Belden LK, Moore IT (2017) Testosterone levels are positively correlated with cloacal bacterial diversity and the relative abundance of Chlamydiae in breeding male rufous-collared sparrows. Funct Ecol 31:192–203CrossRefGoogle Scholar
  37. Evans MR, Goldsmith AR, Norris SR (2000) The effects of testosterone on antibody production and plumage coloration in male house sparrows (Passer domesticus). Behav Ecol Sociobiol 47:156–163CrossRefGoogle Scholar
  38. Ferman LM, Peter HU, Montalti D (2010) A study of feral pigeon Columba livia var. in urban and suburban areas in the city of Jena, Germany. Arxius de Miscellània Zoològica 8:1–8Google Scholar
  39. Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622CrossRefGoogle Scholar
  40. Forshaw JM (2010) Parrots of the world. Helm Field Guides, Christopher Helm Edtions, LondonCrossRefGoogle Scholar
  41. Fry DM (1995) Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ Health Perspect 103:165PubMedCentralPubMedGoogle Scholar
  42. Gaertner M, Wilson JRU, Cadotte MW, MacIvor JS, Zenni RD, Richardson DM (2017) Non-native species in urban environments: patterns, processes, impacts and challenges. Biol Invasions 19:3461–3469CrossRefGoogle Scholar
  43. Galloway TD, Lamb RJ (2016) Chewing lice (Phthiraptera: Amblycera and Ischnocera) infesting woodpeckers and sapsuckers (Aves: Piciformes: Picidae) in Manitoba, Canada. Can Entomol 148:520–531CrossRefGoogle Scholar
  44. Golightly Jr RT, Faulhaber MR, Sallee KL, Lewis JC (1994) Food habits and management of introduced red fox in southern California. Proceedings of the Sixteenth Vertebrate Pest Conference 21Google Scholar
  45. Guimarães LR (1980) Ischnocera (Mallophaga) infesting parrots (Psittaciformes). IV. Genus Echinophilopterus Ewing, 1927. Papeis avulsos de zoologiaGoogle Scholar
  46. Hernández-Brito D, Carrete M, Popa-Lisseanu AG, Ibáñez C, Tella JL (2014) Crowding in the city: losing and winning competitors of an invasive bird. PLoS One 9:e100593CrossRefPubMedGoogle Scholar
  47. Heylen DJA, Matthysen E (2008) Effect of tick parasitism on the health status of a passerine bird. Funct Ecol 22:1099–1107CrossRefGoogle Scholar
  48. Himsworth CG, Parsons KL, Jardine C, Patrick DM (2013) Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector Borne Zoonotic Dis 13:349–359CrossRefGoogle Scholar
  49. Hodges JL, Le Cam L (1960) The Poisson approximation to the Poisson binomial distribution. Ann Math Stat 31:737–740CrossRefGoogle Scholar
  50. Hofer S, Gloor S, Müller U et al (2000) High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zürich, Switzerland. Parasitology 120:135–142CrossRefGoogle Scholar
  51. Hudson P, Greenman J (1998) Competition mediated by parasites: biological and theoretical progress. Trends Ecol Evol 13:387–390CrossRefGoogle Scholar
  52. Hutson AM (1984) Keds, Flat-flies and Bat-flies: Diptera, Hippoboscidae and Nycteribiidae. Royal Entomological Society of London, LondonGoogle Scholar
  53. Johnson KP, Clayton DH (2003) The biology, ecology, and evolution of chewing lice, vol 24. Illinois Natural History Survey Special Publication, Champaign, pp 449–476Google Scholar
  54. Jokimäki J, Suhonen J (1998) Distribution and habitat selection of wintering birds in urban environments. Landsc Urban Plan 39:253–263CrossRefGoogle Scholar
  55. Karamon J, Larska M, Jasik A, Sell B (2015) First report of the giant liver fluke (Fascioloides magna) infection in farmed fallow deer (Dama dama) in Poland–pathomorphological changes and molecular identification. Bull Vet Inst Pulawy 59:339–344CrossRefGoogle Scholar
  56. Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM (2009) Parasite spillback: a neglected concept in invasion ecology? Ecology 90:2047–2056CrossRefGoogle Scholar
  57. Krasnov BR, Shenbrot GI, Khokhlova IS, Allan Degen A (2004) Relationship between host diversity and parasite diversity: flea assemblages on small mammals. J Biogeogr 31:1857–1866CrossRefGoogle Scholar
  58. Krasnov BR, Morand S, Hawlena H, Khokhlova IS, Shenbrot GI (2005) Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146:209–217CrossRefGoogle Scholar
  59. Le Louarn M, Couillens B, Deschamps-Cottin M, Clergeau P (2016) Interference competition between an invasive parakeet and native bird species at feeding sites. J Ethol 34:291–298CrossRefPubMedGoogle Scholar
  60. MacGregor-Fors I, Calderón-Parra R, Meléndez-Herrada A, López-López S, Schondube JE (2011) Pretty, but dangerous! Records of non-native monk parakeets (Myiopsitta monachus) in Mexico. Rev Mex Biodiversidad 82:1053–1056Google Scholar
  61. Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  62. Marsot M, Chapuis JL, Gasqui P, Dozières A, Massèglia S, Pisanu B, Ferquel B, Vourc’h G (2013) Introduced Siberian chipmunk (Tamias sibiricus barberi) contribute more to Lyme borreliosis risk than native reservoir rodents. PLoS One 8:e55377CrossRefPubMedGoogle Scholar
  63. Mazza G, Tricarico E, Genovesi P, Gherardi F (2014) Biological invaders are threats to human health: an overview. Ethol Ecol Evol 26:112–129CrossRefGoogle Scholar
  64. Mazzamuto MV, Pisanu B, Romeo C et al (2016) Poor parasite Community of an invasive alien Species: macroparasites of Pallas’s squirrel in Italy. Ann Zool Fenn 53:103–112CrossRefGoogle Scholar
  65. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176CrossRefGoogle Scholar
  66. Menchetti M, Mori E (2014) Worldwide impact of alien parrots (Aves Psittaciformes) on native biodiversity and environment: a review. Ethol Ecol Evol 26:172–194CrossRefGoogle Scholar
  67. Møller AP, Dufva R, Allander K (1993) Parasites and the evolution of host social behavior. Adv Study Behav 22:60405–60402Google Scholar
  68. Mori E, Di Febbraro M, Foresta M, Melis P, Romanazzi E, Notari A, Boggiano F (2013) Assessment of the current distribution of free-living parrots and parakeets (Aves: Psittaciformes) in Italy: a synthesis of published data and new records. Ital J Zool 80:158–167CrossRefGoogle Scholar
  69. Mori E, Ancillotto L, Groombridge J, Howard T, Smith VS, Menchetti M (2015) Macroparasites of introduced parakeets in Italy: a possible role for parasite-mediated competition. Parasitol Res 114:3277–3281CrossRefGoogle Scholar
  70. Mori E, Ancillotto L, Menchetti M, Strubbe D (2017) “The early bird catches the nest”: possible competition between scops owls and ring-necked parakeets. Anim Conserv 20:463–470CrossRefGoogle Scholar
  71. Mori E, Zozzoli R, Menchetti M (2018) The invasion of “Chip ‘n Dale”: global distribution and status of introduced Siberian chipmunks Eutamias sibiricus. Mammal Rev. CrossRefGoogle Scholar
  72. Onstad DW, McManus ML (1996) Risks of host range expansion by parasites of insects. BioScience 46:430–435CrossRefGoogle Scholar
  73. Orchan Y, Chiron F, Shwartz A, Kark S (2013) The complex interaction network among multiple invasive bird species in a cavity-nesting community. Biol Invasions 15:429–445CrossRefGoogle Scholar
  74. Orton DI, Warren LJ, Wilkinson JD (2000) Avian mite dermatitis. Clin Exp Dermatol 25:129–131CrossRefGoogle Scholar
  75. Owen JP, Delany ME, Cardona CJ, Bickford AA, Mullens BA (2009) Host inflammatory response governs fitness in an avian ectoparasite, the northern fowl mite (Ornithonyssus sylviarum). Int J Parasitol 39:789–799CrossRefGoogle Scholar
  76. Palma RL (1978) Slide-mounting of lice: a detailed description of the Canada balsam technique. N Z Entomol 6:432–436CrossRefGoogle Scholar
  77. Pârâu LG, Strubbe D, Mori E et al (2016) Rose-ringed Parakeet Psittacula krameri populations and numbers in Europe: a complete overview. Open Ornithol J 9(1):1–13CrossRefGoogle Scholar
  78. Parsons H, Major RE, French K (2006) Species interactions and habitat associations of birds inhabiting urban areas of Sydney, Australia. Austral Ecol 31:217–227CrossRefGoogle Scholar
  79. Pinheiro J, Bates D, DebRoy S, Sarkar D (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1–117. Available at
  80. Pisanu B, Laroucau K, Aaziz R et al (2018) Chlamydia avium detection from a Ring-necked parakeet (Psittacula krameri) in France. J Exot Pet Med. CrossRefGoogle Scholar
  81. Poulin R (1996) Sexual inequalities in helminth infections: a cost of being a male? Am Nat 147:287–295CrossRefGoogle Scholar
  82. Price RD, Hellenthal RA, Palma RL (2003) World checklist of chewing lice with host associations and keys to families and genera. In: Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH (eds) The chewing lice: world checklist and biological overview. Illinois Natural History Survey Special Publication, Champaign-Urbana, pp 1–448Google Scholar
  83. Pyke GH, Szabo JK (2018) Conservation and the 4 Rs, which are rescue, rehabilitation, release, and research. Conserv Biol 32:50–59CrossRefGoogle Scholar
  84. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, WienGoogle Scholar
  85. Ralph CJ, Sauer JR, Droege S (1995) Monitoring bird populations by point counts. Gen. Tech. Rep. PSW-GTR-149. Department of Agriculture, Forest Service, Pacific Southwest Research Station, AlbanyCrossRefGoogle Scholar
  86. Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239CrossRefGoogle Scholar
  87. Romeo C, Wauters LA, Ferrari N, Lanfranchi P, Martinoli A, Pisanu B, Preatoni DG, Saino N, Russo D (2014) Macroparasite fauna of alien grey squirrels (Sciurus carolinensis): composition, variability and implications for native species. Plos One 9(2) e88002CrossRefPubMedGoogle Scholar
  88. Rothenburger JL, Himsworth CH, Nemeth NM, Pearl DL, Jardine CM (2017) Environmental factors and zoonotic pathogen ecology in urban exploiter species. EcoHealth 14:630–641CrossRefGoogle Scholar
  89. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  90. Shochat E, Lerman SB, Anderies JM, Warren PS, Faeth SH, Nilon CH (2010) Invasion, competition, and biodiversity loss in urban ecosystems. BioScience 60:199–208CrossRefGoogle Scholar
  91. Smit FGAM (1983) Key to the genera and subgenera of Ceratophyllidae. In: Traub R, Rothschild M, Haddow J (eds) The Rothschild collection of fleas. The Ceratophyllidae. British Museum (Nat. Hist.), London, pp 1–36Google Scholar
  92. Strubbe D, Matthysen E (2011) A radiotelemetry study of habitat use by the exotic Ring-necked Parakeet Psittacula krameri in Belgium. Ibis 153:180–184CrossRefGoogle Scholar
  93. Torchin ME, Mitchell CE (2004) Parasites, pathogens, and invasions by plants and animals. Front Ecol Environ 2:183–190CrossRefGoogle Scholar
  94. Turbè A, Strubbe D, Mori E et al (2017) Assessing the assessments: evaluation of four impact assessment protocols for invasive alien species. Divers Distrib 23:297–307CrossRefGoogle Scholar
  95. Tuttle LJ, Sikkel PC, Cure K, Hixon MA (2017) Parasite-mediated enemy release and low biotic resistance may facilitate invasion of Atlantic coral reefs by Pacific red lionfish (Pterois volitans). Biol Invasions 19:563–575CrossRefGoogle Scholar
  96. Uller T, Olsson M (2003) Prenatal exposure to testosterone increases ectoparasite susceptibility in the common lizard (Lacerta vivipara). Proc R Soc Lond B Biol Sci 270:1867–1870CrossRefGoogle Scholar
  97. van Rensburg BJ, Peacock DS, Robertson MP (2009) Biotic homogenization and alien bird species along an urban gradient in South Africa. Landsc Urban Plan 92:233–241CrossRefGoogle Scholar
  98. Vila’ M, Maron JL, Marco L (2005) Evidence for the enemy release hypothesis in Hypericum perforatum. Oecologia 142:474–479CrossRefGoogle Scholar
  99. Vourc’h G, Abrial D, Bord S, Jacquot M, Masseglia S, Poux V, Pisanu B, Bailly X, Chapuis JL (2016) Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forests in France. Ticks Tick Borne Dis 5:644–652CrossRefGoogle Scholar
  100. Welch JN, Leppanen C (2017) The threat of invasive species to bats: a review. Mammal Rev 47(4):277–290CrossRefGoogle Scholar
  101. Whitaker AP (2007) Fleas (Siphonaptera). In: Royal Entomological Society, Spencer KA (eds) Handbook for the identification of British insects. Entomological Society of London, LondonGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wildlife Research Unit, Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IINaplesItaly
  2. 2.Centro Recupero Fauna Selvatica Lipu RomaRomeItaly
  3. 3.Department of Life SciencesNatural History Museum of LondonLondonUK
  4. 4.School of Biological SciencesUniversity of BristolBristolUK
  5. 5.Dipartimento di Scienze della VitaUniversità degli Studi di SienaSienaItaly
  6. 6.Accademia Nazionale dei LinceiRomeItaly

Personalised recommendations