Parasitology Research

, Volume 117, Issue 11, pp 3537–3545 | Cite as

Ellipsomyxa arariensis n. sp. (Myxozoa: Ceratomyxidae), a new myxozoan parasite of Pygocentrus nattereri Kner, 1858 (Teleostei: Characidae) and Pimelodus ornatus Kner, 1858 (Teleostei: Pimelodidae) from Marajó Island, in the Brazilian Amazon region

  • Diehgo Tuloza da Silva
  • Patricia Santos Matos
  • Aline Medeiros Lima
  • Adriano Penha Furtado
  • Igor Hamoy
  • Edilson Rodrigues MatosEmail author
Original Paper


Ellipsomyxa arariensis n. sp. was found in the gallbladder of Pygocentrus nattereri Kner, 1858 and Pimelodus ornatus Kner, 1858 from the Arari River on Marajó Island in Pará, Brazil. The new species has disporous plasmodium that varies in size and shape, with ellipsoidal mature spores in the sutural view that have a curved suture line. The spores are 12.6 (12.0–13.4) μm in length and 7.3 (6.7–8.0) μm in width. The two polar capsules present in the spore are pyriform and of equal size, with subterminal openings that project in opposite directions. The polar capsules are 3.5 (3.4–4.0) μm long and 2.6 (2.5–3.2) μm wide. Based on the partial sequences of the SSU rRNA gene of the Ellipsomyxa arariensis n. sp. spores found in Pygocentrus nattereri Kner, 1858 (1325 bps) and Pimelodus ornatus Kner, 1858 (1240 bps), the new species is clearly distinct from all the other myxozoan sequences deposited in GenBank. Based on Bayesian inference and p distances, the new species belongs to the “Ellipsomyxa clade”, together with all the other Ellipsomxa species, reinforcing the monophyletic status of this genus. Overall, the morphological data and the partial sequences of the SSU rRNA gene provide a conclusive diagnosis of Ellipsomyxa arariensis n. sp. as a species distinct from all the other Ellipsomyxa species described previously.


Freshwater fish 18S rDNA Micropasites New species 


Compliance with ethical standards

Conflict interest

The authors declare that they have no conflict of interest.


  1. Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Sabaj Pérez MH, Petry P (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58:403–414CrossRefGoogle Scholar
  2. Aguiar JC, Adriano ED, Mathews PD (2017) Morphology and molecular phylogeny of a new Myxidium species (Cnidaria: Myxosporea) infecting the farmed turtle Podocnemis expansa (Testudines: Podocnemididae) in the Brazilian Amazon. Parasitol Int 66:825–830CrossRefGoogle Scholar
  3. Azevedo C, Corral L, Matos M (2002) Myxobolus desaequalis n. Sp. (Myxozoa, Myxosporea), parasite of the Amazonian freshwater fish, Apteronotus albifrons (Teleostei, Apteronotidae). J Eukaryot Microbiol 49:485–488CrossRefGoogle Scholar
  4. Azevedo C, Videira M, Casal G, Matos P, Oliveira E, Al-Quraishy S, Matos E (2013) Fine structure of the plasmodia and Myxospore of Ellipsomyxa gobioides n. Sp. (Myxozoa) found in the gallbladder of Gobioides broussonnetii (Teleostei: Gobiidae) from the lower Amazon river. J Eukaryot Microbiol 60(5):490–496CrossRefGoogle Scholar
  5. Azevedo C, Rocha S, Matos E, Oliveira E, Matos P, Al-Quraishy S, Casal G (2016) Ultrastructural and phylogenetic description of Kudoa orbicularis n. Sp. (Myxosporea: Multivalvulida): a parasite infecting the muscle of the fish Chaetobranchopsis orbicularis (Teleostei: Cichlidae) in the Amazon region. J Eukaryot Microbiol 63(1):27–36CrossRefGoogle Scholar
  6. Bartholomew JL, Atkinson SD, Hallett SL, Lowenstine LJ, Garner MM, Gardiner CH, Rideout BA, Keel MK, Brown JD (2008) Myxozoan parasitism in waterfowl. Int J Parasitol 38:1199–1207CrossRefGoogle Scholar
  7. Casal G, Matos E, Azevedo C (1996) Ultrastructural data on the life cycle stages of Myxobolus braziliensis n. sp. parasite of an Amazonian fish. Eur J Protistol 32:123–127CrossRefGoogle Scholar
  8. Chang EA, Neuhof M, Rubinsteind ND, Diamante A, Philippe H, Huchon D, Cartwrighta P (2015) Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc Natl Acad Sci U S A 112:14912–14917CrossRefGoogle Scholar
  9. Fiala I (2006) The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis. Int J Parasitol 36(14):1521–1534CrossRefGoogle Scholar
  10. Fiala I, Bartošová-Sojková P, Whipps CM (2015) Classification and phylogenetics of myxozoa. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan Evolution. Ecology and Development. Springer International Publishing, Cham, pp 85–110CrossRefGoogle Scholar
  11. Glasby CJ (1999) The Namanereidinae (Polychaeta: Nereididae). Part 1, taxonomy and phylogeny. Part 2, Cladistic biogeography. Rec Aust Mus 25:1–129 10.3853/j.0812-7387.25.1999.1355CrossRefGoogle Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  13. Hedrick RP, El-Matbouli M, Adkison MA, MacConnell E (1998) Whirling disease: re-emergence among wild trout. Immunol Rev 166:365–376CrossRefGoogle Scholar
  14. Heiniger H, Adlard RD (2014) Relatedness of novel species of Myxidium Butschli, 1882, Zschokkella Auerbach, 1910 and Ellipsomyxa Køie, 2003 (Myxosporea: Bivalvulida) from the gall bladders of marine fishes (Teleostei) from Australian waters. Syst Parasitol 87:47–72CrossRefGoogle Scholar
  15. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66(4):411–453CrossRefGoogle Scholar
  16. Holzer AS, Sommerville C, Wootten R (2004) Molecular relationships and phylogeny in a community of myxosporeans and actinosporeans based on their 18S rDNA sequences. Int J Parasitol 34(10):1099–1111CrossRefGoogle Scholar
  17. Jimenez-Guri E, Philippe H, Okamura B, Holland PWH (2007) Buddenbrockia is a cnidarian worm. Science 317:116–118CrossRefGoogle Scholar
  18. Junk WJ, Soares MGM, Bayley PB (2007) Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquat Ecosyst Health Manag 10:153–173CrossRefGoogle Scholar
  19. Karlsbakk E, Køie M (2012) The marine myxosporean Sigmomyxa sphaerica (Thélohan, 1895) gen. N., comb. n. (syn. Myxidium sphaericum) from garfish (Belone belone (L.)) uses the polychaete Nereis pelagica L. as invertebrate host. Parasitol Res 110(1):211–218CrossRefGoogle Scholar
  20. Kent ML, Andree KB, Bartholomew JL, El-Matbouli M, Desser SS, Devlin RH, Feist SW, Hedrick RP, Hoffmann RW, Khattra J, Hallett SL, Lester RJ, Longshaw M, Palenzeula O, Siddall ME, Xiao C (2001) Recent advances in our knowledge of the Myxozoa. J Eukaryot Microbiol 48(4):395–413CrossRefGoogle Scholar
  21. Køie M (2003) Ellipsomyxa gobii gen. Et sp. n. (Myxozoa: Ceratomyxidae) in the common goby Pomatoschistus microps (Teleostei: Gobiidae) from Denmark. Folia Parasitol 50(4):269–271CrossRefGoogle Scholar
  22. Køie M, Karlsbakk E (2009) Ellipsomyxa syngnathi sp. n. (Myxozoa, Myxosporea) in the pipefish Syngnathus typhle and S. rostellatus (Teleostei, Syngnathidae) from Denmark. Parasitol Res 105(6):1611–1616CrossRefGoogle Scholar
  23. Køie M, Whipps CM, Kent ML (2004) Ellipsomyxa gobii (Myxozoa: Ceratomyxidae) in the common goby Pomatoschistus microps (Teleostei: Gobiidae) uses Nereis spp. (Annelida: Polychaeta) as invertebrate hosts. Folia Parasitol 51(1):14–18CrossRefGoogle Scholar
  24. Lom J, Arthur JR (1989) A guideline for the preparation of species descriptions in Myxosporea. J Fish Dis 12:151–156CrossRefGoogle Scholar
  25. Lom J, Dyková I (2006) Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitol 53:1–36CrossRefGoogle Scholar
  26. Luna LG (1968) Manual of histologic staining methods of the armed forces institute of pathology. McGraw-Hill, New YorkGoogle Scholar
  27. Mathews PD, Maia AAM, Adriano EA (2016) Henneguya melini n. Sp. (Myxosporea: Myxobolidae), a parasite of Corydoras melini (Teleostei: Siluriformes) in the Amazon region: morphological and ultrastructural aspects. Parasitol Res 115:3599–3604CrossRefGoogle Scholar
  28. Matos E, Tajdari J, Azevedo C (2005) Ultrastructural studies of Henneguya rhamdia n. sp. (Myxozoa) a parasite from the Amazon teleost fish, Rhamdia quelen (Pimelodidae). J Eukaryot Microbiol 52:532–537CrossRefGoogle Scholar
  29. Matos E, Marcela Videira M, Velasco M, Sanches O, São Clemente SC, Matos P (2014) Infection of the heart of Pimelodus ornatus (Teleostei, Pimelodidae), by Myxobolus sp. (Myxozoa, Myxobolidae). Braz J Vet Parasitol 23(4):543–546CrossRefGoogle Scholar
  30. Matos PS, da Silva DT, Hamoy I, Matos E (2018) Morphological features and molecular phylogeny of Hoferellus azevedoi n. sp. (Myxozoa: Myxobilatidae) found in Chaetobranchus flavescens Heckel, 1840 (Teleostei: Cichlidae) from Marajó Island, northern Brazil. Parasitol Res 117(4):1087–1093CrossRefGoogle Scholar
  31. Mcgrath DG, Castello L, Almeida OT, Estupiñán GMB (2015) Market formalization, governance, and the integration of community fisheries in the Brazilian Amazon. Soc Nat Resour 28:513–529CrossRefGoogle Scholar
  32. Molnár K, Eszterbauer E, Szckely C, Dán Á, Harrach B (2002) Morphological and molecular biological studies on intramuscular Myxobolus spp. of cyprinid fish. J Fish Dis 25:643–652CrossRefGoogle Scholar
  33. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  34. Prunescu CC, Prunesco P, Pucek Z, Lom J (2007) The first finding of myxosporean development from plasmodia to spores in terrestrial mammals: Soricimyxum fegati, gen. Et sp. n. (Myxozoa) from Sorex araneus (Soricomorpha). Folia Parasitol 54:159–164CrossRefGoogle Scholar
  35. Rangel LF, Santos MJ, Cech G, Székely C (2009) Morphology, molecular data, and development of Zschokkella mugilis (Myxosporea, Bivalvulida) in a polychaete alternate host, Nereis diversicolor. J Parasitol 95(3):561–569. CrossRefPubMedGoogle Scholar
  36. Ribeiro RP, Alves PR, Almeida ZS, Ruta C (2018) A new species of Paraonis and an annotated checklist of polychaetes from mangroves of the Brazilian Amazon coast (Annelida, Paraonidae). ZooKeys 740:1–34. CrossRefGoogle Scholar
  37. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  38. Sitjà-Bobadilla A, Alvarez-Pellitero P (1993) Zschokkella mugilis n. sp. (Myxosporea: Bivalvulida) from mullets (Teleostei: Mugilidae) of Mediterranean waters: light and electron microscopic description. J Eukaryot Microbiol 40(6):755–764. CrossRefGoogle Scholar
  39. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods), v. 4.0 beta 10. Sinauer Associates, SunderlandGoogle Scholar
  40. Thabet A, Tlig-Zouari S, Al Omar SY, Mansour L (2016) Molecular and morphological characterisation of two species of the genus Ellipsomyxa Køie, 2003 (Ceratomyxidae) from the gall-bladder of Liza saliens (Risso) off Tunisian coasts of the Mediterranean. Syst Parasitol 93(6):601–611CrossRefGoogle Scholar
  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL–X window interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  42. Velasco M, Videira M, Nascimento LCS, Matos P, Gonçalves EC, Matos E (2016) Henneguya paraensis n. sp. (Myxozoa; Myxosporea), a new gill parasite of the Amazonian fish Cichla temensis (Teleostei: Cichlidae): morphological and molecular aspects. Parasitol Res 115:1779–1787CrossRefGoogle Scholar
  43. Whipps CM, Font WF (2013) Interaction of two myxozoan parasites from naked goby Gobiosoma bosc, in Lake Pontchartrain, Louisiana. J Parasitol 99(3):441–447CrossRefGoogle Scholar
  44. Whipps CM, Adlard RD, Bryant MS, Kent ML (2003) Two unusual myxozoans, Kudoa quadricornis n. sp. (Multivalvulida) from the muscle of goldspotted trevally (Carangoides fulvoguttatus) and Kudoa permulticapsula n. sp. (Multivalvulida) from the muscle of Spanish mackerel (Scomberomorus commerson) from the Great Barrier Reef, Australia. J Parasitol 89(1):168–173CrossRefGoogle Scholar
  45. Zatti SA, Atkinson SD, Maia AAM, Corrêa LL, Bartholomew JL, Adriano EA (2018) Novel Myxobolus and Ellipsomyxa species (Cnidaria: Myxozoa) parasiting Brachyplatystoma rousseauxii (Siluriformes: Pimelodidae) in the Amazon basin, Brazil. Parasitol Int 67(5):612–621CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Carlos Azevedo Research LaboratoryFederal Rural University of the Amazon (UFRA)BelémBrazil
  2. 2.Laboratory of Applied GeneticsFederal Rural University of Amazonia (UFRA)BelémBrazil
  3. 3.Federal Rural University of the Amazon (UFRA)BelémBrazil
  4. 4.Federal University of Pará (UFPA)BelémBrazil

Personalised recommendations