Advertisement

Parasitology Research

, Volume 117, Issue 11, pp 3473–3479 | Cite as

In vitro expression and functional characterization of NPA motifs in aquaporins of Nosema bombycis

  • Gong Chen
  • Zhilin Zhang
  • Ruisha Shang
  • Jingru Qi
  • Yiling Zhang
  • Shunming Tang
  • Zhongyuan Shen
Original Paper
  • 48 Downloads

Abstract

Nosema bombycis contains functional aquaporins (NbAQPs), which are key targets for exploring the mechanism of N. bombycis infection; however, the regulation of these NbAQPs remains unknown. The two highly conserved asparagine-proline-alanine sequences (NPA motifs) play important roles in AQP biogenesis. As part of this study, we constructed a series of NbAQP mutants (NbAQP_NPA1, NbAQP_NPA2, and NbAQP_NPA1,2) and expressed them in BmN cells. The results showed that mutations in either NPA motif or in both NPA motifs did not affect NbAQP expression in vitro. After expression in Xenopus laevis oocytes, those injected with wild-type NbAQP rapidly expanded, whereas oocytes injected with NbAQP_NPAs did not significantly change in size. The associated water permeability (pf) of NbAQP_NPAs was significantly reduced five–six times compared to that of wild-type NbAQP. These results indicated that NPA motifs are necessary for the water channel function of AQPs in N. bombycis. The present study shows for the first time that the NbAQP NPA motif has an impact on the water permeability of aquaporin in N. bombycis, thereby providing a platform for further research into the mechanisms underlying the regulation of NbAQP expression.

Keywords

Nosema bombycis Aquaporin NPA motifs Immunofluorescence Water permeability 

Notes

Acknowledgments

This work was supported by the earmarked fund for the China Agriculture Research System and the National Natural Science Foundation of China (Grant No. 31372376).

Compliance with ethical standards

Conflict of interest

The authors declare that have no conflicts of interest.

Supplementary material

436_2018_6044_MOESM1_ESM.docx (303 kb)
Supplementary material 1 1 (DOCX 303 kb)
436_2018_6044_MOESM2_ESM.docx (118 kb)
Supplementary material 2 2 (DOCX 118 kb)

References

  1. Becnel JJ, White SE, Shapiro AM (2005) Review of microsporidia-mosquito relationships: from the simple to the complex. Folia Parasitol 52(1–2):41–50CrossRefGoogle Scholar
  2. Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci U S A 103(2):269–274CrossRefGoogle Scholar
  3. Boban M, Pantazopoulou M, Schick A, Ljungdahl PO, Foisner R (2014) A nuclear ubiquitin-proteasome pathway targets the inner nuclear membrane protein Asi2 for degradation. J Cell Sci 127(16):3603–3613CrossRefGoogle Scholar
  4. Carbrey JM, Agre P (2009) Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 190(190):3CrossRefGoogle Scholar
  5. Chen G, Wang W, Chen H, Dai W, Peng X, Li X, Tang X, Xu L, Shen Z (2017) Functional characterization of an aquaporin from a microsporidium, Nosema bombycis. PLoS One 12(7):e0181703CrossRefGoogle Scholar
  6. Cho G, Bragiel AM, Wang D, Pieczonka TD et al (2015) Activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane. Biochim Biophys Acta 1850(4):784–793.  https://doi.org/10.1016/j.bbagen.2015.01.009 CrossRefPubMedGoogle Scholar
  7. Fetter K, Wilder VV, Menachem M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16(1):215–228CrossRefGoogle Scholar
  8. Guan XG, Su WH, Yi F, Zhang D, Hao F, Zhang HG, Liu YJ, Feng XC, Ma TH (2010) NPA motifs play a key role in plasma membrane targeting of aquaporin-4. IUBMB Life 62(3):222–226CrossRefGoogle Scholar
  9. Hove RM, Bhave M (2011) Plant aquaporins with non-aqua functions: deciphering the signature sequences. Plant Mol Biol 75(4–5):413–430CrossRefGoogle Scholar
  10. Ishihara R (1967) Stimuli causing extrusion of polar filaments of Glugea fumiferanae spores. Can J Microbiol 13(10):1321–1332CrossRefGoogle Scholar
  11. Jiang Y (2010) Expression and functional characterization of NPA motif-null aquaporin-1 mutations. IUBMB Life 61(6):651–657CrossRefGoogle Scholar
  12. Medwid RD, Grant DW (1984) Germination of Rhizopus oligosporus sporangiospores. Appl Environ Microbiol 48(6):1067–1071PubMedPubMedCentralGoogle Scholar
  13. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407(6804):599–605CrossRefGoogle Scholar
  14. Rambow J, Wu B, Rönfeldt D, Beitz E (2014) Aquaporins with anion/monocarboxylate permeability: mechanisms, relevance for pathogen–host interactions. Front Pharmacol 5(199).  https://doi.org/10.3389/fphar.2014.00199
  15. Roche JV, Survery S, Kreida S, Nesverova V, Ampahkorsah H, Gourdon M (2017). Phosphorylationof human aquaporin 2 (AQP2) allosterically controls its interaction with the lysosomal trafficking protein LIP5. J Biol Chem 292(35).  https://doi.org/10.1074/jbc.M117.788364 CrossRefGoogle Scholar
  16. Schrade K, Tröger J, Eldahshan A, Zühlke K, Abdul Azeez KR, Elkins JM, Neuenschwander M, Oder A, Elkewedi M, Jaksch S, Andrae K, Li J, Fernandes J, Müller PM, Grunwald S, Marino SF, Vukićević T, Eichhorst J, Wiesner B, Weber M, Kapiloff M, Rocks O, Daumke O, Wieland T, Knapp S, von Kries JP, Klussmann E (2018) An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells. PLoS One 13(1):e0191423CrossRefGoogle Scholar
  17. Setlow P (2003) Spore germination. Curr Opin Microbiol 6(6):550–556CrossRefGoogle Scholar
  18. Strand L, Moe SE, Solbu TT, Vaadal M, Holen T (2009) Roles of aquaporin-4 isoforms and amino acids in square array assembly. Biochemistry 48(25):5785–5793CrossRefGoogle Scholar
  19. Tajkhorshid E, Nollert P, Jensen MØ, Miercke LJ, O'Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296(5567):525–530CrossRefGoogle Scholar
  20. Tidhar T et al (2016) The role of aquaporins in pH-dependent germination of Rhizopus delemar spores. PLoS One 11(3):e0150543CrossRefGoogle Scholar
  21. Undeen AH (1983) The germination of Vavraia culicis spores. J Eukaryot Microbiol 30(2):274–277Google Scholar
  22. Undeen AH, Avery SW (1988) Effect of anions on the germination of Nosema algerae (Microspora: Nosematidae) spores. J Invertebr Pathol 52(1):84–89CrossRefGoogle Scholar
  23. Undeen AH, Vandermeer RK (1999) Microsporidian intrasporal sugars and their role in germination. J Invertebr Pathol 73(3):294–302CrossRefGoogle Scholar
  24. Verkman AS (2008) Mammalian aquaporins: diverse physiological roles and potential clinical significance. Expert Rev Mol Med 10(e3):e13CrossRefGoogle Scholar
  25. Wang H, Li C, Yang Z, Zheng Y, Zhang Y, Liu Y (2006) Electrophysiological effect of fluoxetine on Xenopus oocytes heterologously expressing human serotonin transporter. Acta Pharmacol Sin 27(3):289–293CrossRefGoogle Scholar
  26. Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, Fujiyoshi Y (2007) Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta 1768(3):688–693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu University of Science and TechnologyZhenjiangChina
  2. 2.Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangChina
  3. 3.Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural MinistryZhenjiangChina

Personalised recommendations