Parasitology Research

, Volume 117, Issue 11, pp 3381–3389 | Cite as

A putative calcium-ATPase of the secretory pathway family may regulate calcium/manganese levels in the Golgi apparatus of Entamoeba histolytica

  • Mario A. Rodríguez
  • Aarón Martínez-Higuera
  • Martha I. Valle-Solis
  • Mario Hernandes-Alejandro
  • Bibiana Chávez-Munguía
  • Ana H. Figueroa-Gutiérrez
  • Andrés Salas-CasasEmail author
Original Paper


Calcium regulates many cellular processes in protozoa, including growth, differentiation, programmed cell death, exocytosis, endocytosis, phagocytosis, fusion of the endosomes of distinct stages with phagosomes, fusion of phagosomes with lysosomes, and recycling the membrane. In Entamoeba histolytica, the protozoa responsible for human amoebiasis, calcium ions are essential for signaling pathways that lead to growth and development. In addition, calcium is crucial in the modulation of gene expression in this microorganism. However, there is scant information about the proteins responsible for regulating calcium levels in this parasite. In this work, we characterized a protein of E. histolytica that shows a close phylogenetic relationship with Ca2+ pumps that belong to the family of secretory pathway calcium ATPases (SPCA), which for several organisms are located in the Golgi apparatus. The amoeba protein analyzed herein has several amino acid residues that are characteristic of SPCA members. By an immunofluorescent technique using specific antibodies and immunoelectron microscopy, the protein was detected on the membrane of some cytoplasmic vacuoles. Moreover, this putative calcium-ATPase was located in vacuoles stained with NBD C6-ceramide, a Golgi marker. Overall, the current findings support the hypothesis that the presently analyzed protein corresponds to the SPCA of E. histolytica.


Entamoeba histolytica Golgi apparatus Calcium-ATPases SPCA 



We thank to Carlos Vázquez-Calzada, for his invaluable technical assistance (Centro de Investigación y de Estudios Avanzados del IPN).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2018_6030_MOESM1_ESM.docx (60 kb)
ESM 1 (DOCX 59 kb)


  1. Bakker-Grunwald T, Parduhn H (1993) The Ca(2+)-ATPase activity of Entamoeba histolytica is exposed towards the medium and towards the lumen of intracellular vesicles. Mol Biochem Parasitol 57(1):167–170CrossRefGoogle Scholar
  2. Bhattacharya A, Padhan N, Jain R, Bhattacharya S (2006) Calcium-binding proteins of Entamoeba histolytica. Arch Med Res 37(2):221–225. CrossRefPubMedGoogle Scholar
  3. Bredeston LM, Caffaro CE, Samuelson J, Hirschberg CB (2005) Golgi and endoplasmic reticulum functions take place in different subcellular compartments of Entamoeba histolytica. J Biol Chem 280(37):32168–32176. CrossRefPubMedGoogle Scholar
  4. Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89(4):1341–1378. CrossRefPubMedGoogle Scholar
  5. Brini M, Carafoli E, Cali T (2017) The plasma membrane calcium pumps: focus on the role in (neuro)pathology. Biochem Biophys Res Commun 483(4):1116–1124. CrossRefPubMedGoogle Scholar
  6. Carbajal ME, Manning-Cela R, Pina A, Franco E, Meza I (1996) Fibronectin-induced intracellular calcium rise in Entamoeba histolytica trophozoites: effect on adhesion and the actin cytoskeleton. Exp Parasitol 82(1):11–20. CrossRefPubMedGoogle Scholar
  7. Chandra S, Kable EP, Morrison GH, Webb WW (1991) Calcium sequestration in the Golgi apparatus of cultured mammalian cells revealed by laser scanning confocal microscopy and ion microscopy. J Cell Sci 100(Pt 4):747–752PubMedGoogle Scholar
  8. Cho JH, Bandyopadhyay J, Lee J, Park CS, Ahnn J (2000) Two isoforms of sarco/endoplasmic reticulum calcium ATPase (SERCA) are essential in Caenorhabditis elegans. Gene 261(2):211–219CrossRefGoogle Scholar
  9. Cohen Y, Megyeri M, Chen OCW, Condomitti G, Riezman I, Loizides-Mangold U, Abdul-Sada A, Rimon N, Riezman H, Platt FM, Futerman AH, Schuldiner M (2013) The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum. PLoS One 8(12):e85519. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Diamond LS, Harlow DR, Cunnick CC (1978) A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med Hyg 72(4):431–432CrossRefGoogle Scholar
  11. Dode L, Andersen JP, Vanoevelen J, Raeymaekers L, Missiaen L, Vilsen B, Wuytack F (2006) Dissection of the functional differences between human secretory pathway Ca2+/Mn2+-ATPase (SPCA) 1 and 2 isoenzymes by steady-state and transient kinetic analyses. J Biol Chem 281(6):3182–3189. CrossRefPubMedGoogle Scholar
  12. Durr G et al (1998) The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 9(5):1149–1162CrossRefGoogle Scholar
  13. Furune T, Hashimoto K, Ishiguro J (2008) Characterization of a fission yeast P(5)-type ATPase homologue that is essential for Ca(2+)/Mn(2+ )homeostasis in the absence of P(2)-type ATPases. Genes Genet Syst 83(5):373–381CrossRefGoogle Scholar
  14. Ghosh SK, Field J, Frisardi M, Rosenthal B, Mai Z, Rogers R, Samuelson J (1999) Chitinase secretion by encysting Entamoeba invadens and transfected Entamoeba histolytica trophozoites: localization of secretory vesicles, endoplasmic reticulum, and Golgi apparatus. Infect Immun 67(6):3073–3081PubMedPubMedCentralGoogle Scholar
  15. Gilchrist CA, Leo M, Line CG, Mann BJ, Petri WA Jr (2003) Calcium modulates promoter occupancy by the Entamoeba histolytica Ca2+-binding transcription factor URE3-BP. J Biol Chem 278(7):4646–4653. CrossRefPubMedGoogle Scholar
  16. Hancock DC, Evan GI (1998) Production and characterization of antibodies against synthetic peptides. Methods Mol Biol 80:15–22. CrossRefPubMedGoogle Scholar
  17. He W, Hu Z (2012) The role of the Golgi-resident SPCA Ca(2)(+)/Mn(2)(+) pump in ionic homeostasis and neural function. Neurochem Res 37(3):455–468. CrossRefPubMedGoogle Scholar
  18. Hu Z, Bonifas JM, Beech J, Bench G, Shigihara T, Ogawa H, Ikeda S, Mauro T, Epstein EH (2000) Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat Genet 24(1):61–65. CrossRefPubMedGoogle Scholar
  19. Jain R, Santi-Rocca J, Padhan N, Bhattacharya S, Guillen N, Bhattacharya A (2008) Calcium-binding protein 1 of Entamoeba histolytica transiently associates with phagocytic cups in a calcium-independent manner. Cell Microbiol 10(6):1373–1389. CrossRefPubMedGoogle Scholar
  20. Kobayashi S, Takeuchi T, Asami K, Fujiwara T (1982) Entamoeba histolytica: ultrastructural localization of Ca2+-dependent nucleotidases. Exp Parasitol 54(2):202–212CrossRefGoogle Scholar
  21. Kumar S, Aslam S, Mazumder M, Dahiya P, Murmu A, Manjasetty BA, Zaidi R, Bhattacharya A, Gourinath S (2014) Crystal structure of calcium binding protein-5 from Entamoeba histolytica and its involvement in initiation of phagocytosis of human erythrocytes. PLoS Pathog 10(12):e1004532. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Leon-Avila G et al (2006) Entamoeba histolytica up-regulates the Cdc48-like protein, an AAA family member, during the activation of trophozoites with collagen type I and calcium. Mol Biochem Parasitol 146(1):113–119. CrossRefPubMedGoogle Scholar
  23. Lustoza AC, Palma LM, Facanha AR, Okorokov LA, Okorokova-Facanha AL (2011) P(5A)-type ATPase Cta4p is essential for Ca2+ transport in the endoplasmic reticulum of Schizosaccharomyces pombe. PLoS One 6(11):e27843. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Makioka A, Kumagai M, Ohtomo H, Kobayashi S, Takeuchi T (2001) Effect of calcium antagonists, calcium channel blockers and calmodulin inhibitors on the growth and encystation of Entamoeba histolytica and E. invadens. Parasitol Res 87(10):833–837CrossRefGoogle Scholar
  25. Makioka A, Kumagai M, Kobayashi S, Takeuchi T (2002) Possible role of calcium ions, calcium channels and calmodulin in excystation and metacystic development of Entamoeba invadens. Parasitol Res 88(9):837–843. CrossRefPubMedGoogle Scholar
  26. Martinez-Higuera A, Salas-Casas A, Calixto-Gálvez M, Chávez-Munguía B, Pérez-Ishiwara DG, Ximénez C, Rodríguez MA (2013) Identification of calcium-transporting ATPases of Entamoeba histolytica and cellular localization of the putative SERCA. Exp Parasitol 135(1):79–86. CrossRefPubMedGoogle Scholar
  27. Martinez-Higuera A et al (2015) Entamoeba invadens: identification of a SERCA protein and effect of SERCA inhibitors on encystation. Microb Pathog 89:18–26. CrossRefPubMedGoogle Scholar
  28. Mazzuco A, Benchimol M, De Souza W (1997) Endoplasmic reticulum and Golgi-like elements in Entamoeba. Micron 28(3):241–247CrossRefGoogle Scholar
  29. Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155(1):41–51. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mitchell KJ, Tsuboi T, Rutter GA (2004) Role for plasma membrane-related Ca2+-ATPase-1 (ATP2C1) in pancreatic beta-cell Ca2+ homeostasis revealed by RNA silencing. Diabetes 53(2):393–400CrossRefGoogle Scholar
  31. Moller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286(1):1–51CrossRefGoogle Scholar
  32. Munoz Mde L, Moreno MA, Perez-Garcia JN, Tovar GR, Hernandez VI (1991) Possible role of calmodulin in the secretion of Entamoeba histolytica electron-dense granules containing collagenase. Mol Microbiol 5(7):1707–1714CrossRefGoogle Scholar
  33. Orozco E, Guarneros G, Martinez-Palomo A, Sanchez T (1983) Entamoeba histolytica. Phagocytosis as a virulence factor. J Exp Med 158(5):1511–1521CrossRefGoogle Scholar
  34. Polishchuk R, Lutsenko S (2013) Golgi in copper homeostasis: a view from the membrane trafficking field. Histochem Cell Biol 140(3):285–295. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ravdin JI, Murphy CF, Guerrant RL, Long-Krug SA (1985) Effect of antagonists of calcium and phospholipase A on the cytopathogenicity of Entamoeba histolytica. J Infect Dis 152(3):542–549CrossRefGoogle Scholar
  36. Salas-Casas A, Ponce-Balderas A, García-Pérez RM, Cortés-Reynosa P, Gamba G, Orozco E, Rodriguez MA (2006) Identification and functional characterization of EhClC-A, an Entamoeba histolytica ClC chloride channel located at plasma membrane. Mol Microbiol 59(4):1249–1261CrossRefGoogle Scholar
  37. Segovia-Gamboa NC, Talamás-Rohana P, Ángel-Martínez A, Cázares-Raga FE, González-Robles A, Hernández-Ramírez VI, Martínez-Palomo A, Chávez-Munguía B (2011) Differentiation of Entamoeba histolytica: a possible role for enolase. Exp Parasitol 129(1):65–71. CrossRefPubMedGoogle Scholar
  38. Shull GE, Miller ML, Prasad V (2011) Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca2+ pump dysfunction. Biofactors 37(3):150–158. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Suzuki C (2001) Immunochemical and mutational analyses of P-type ATPase Spf1p involved in the yeast secretory pathway. Biosci Biotechnol Biochem 65(11):2405–2411. CrossRefPubMedGoogle Scholar
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Taylor RS, Jones SM, Dahl RH, Nordeen MH, Howell KE (1997) Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell 8(10):1911–1931CrossRefGoogle Scholar
  42. Teixeira JE, Huston CD (2008) Evidence of a continuous endoplasmic reticulum in the protozoan parasite Entamoeba histolytica. Eukaryot Cell 7(7):1222–1226. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thever MD, Saier MH Jr (2009) Bioinformatic characterization of p-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. J Membr Biol 229(3):115–130. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Van Baelen K et al (2004) The Ca2+/Mn2+ pumps in the Golgi apparatus. Biochim Biophys Acta 1742(1–3):103–112. CrossRefPubMedGoogle Scholar
  45. Vangheluwe P, Sepulveda MR, Missiaen L, Raeymaekers L, Wuytack F, Vanoevelen J (2009) Intracellular Ca2+- and Mn2+-transport ATPases. Chem Rev 109(10):4733–4759. CrossRefPubMedGoogle Scholar
  46. WHO (1997) Amoebiasis WHO epidemiol weekly record. vol 72, p 97–100Google Scholar
  47. Xiang M, Mohamalawari D, Rao R (2005) A novel isoform of the secretory pathway Ca2+,Mn(2+)-ATPase, hSPCA2, has unusual properties and is expressed in the brain. J Biol Chem 280(12):11608–11614. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mario A. Rodríguez
    • 1
  • Aarón Martínez-Higuera
    • 2
  • Martha I. Valle-Solis
    • 1
  • Mario Hernandes-Alejandro
    • 3
  • Bibiana Chávez-Munguía
    • 1
  • Ana H. Figueroa-Gutiérrez
    • 4
  • Andrés Salas-Casas
    • 4
    Email author
  1. 1.Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del IPNMexico CityMexico
  2. 2.Departamento de FísicaUniversidad de SonoraHermosilloMexico
  3. 3.Departamento de BioingenieríaUnidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI-IPN)Mexico CityMexico
  4. 4.Instituto de Ciencias de la Salud, Área Académica de GerontologíaUniversidad Autónoma del Estado de HidalgoSan Agustín TlaxiacaMexico

Personalised recommendations