Anti-Trichomonas vaginalis activity of ursolic acid derivative: a promising alternative

  • Fernanda Gobbi Bitencourt
  • Patrícia de Brum Vieira
  • Lucia Collares Meirelles
  • Graziela Vargas Rigo
  • Elenilson Figueiredo da Silva
  • Simone Cristina Baggio Gnoatto
  • Tiana Tasca
Original Paper
  • 41 Downloads

Abstract

Trichomonas vaginalis is an extracellular parasite that binds to the epithelium of the human urogenital tract and causes the sexually transmitted infection, trichomoniasis. In view of increased resistance to drugs belonging to the 5-nitroimidazole class, new treatment alternatives are urgently needed. In this study, eight semisynthetized triterpene derivatives were evaluated for in vitro anti-T. vaginalis activity. Ursolic acid and its derivative, 3-oxime-urs-12-en-28-oic-ursolic acid (9), presented the best anti-T. vaginalis activity when compared to other derivatives, with minimum inhibitory concentration (MIC) at 25 μM. Moreover, 9 was active against several T. vaginalis fresh clinical isolates. Hemolysis assay demonstrated that 9 presented a low hemolytic effect. Importantly, 25 μM 9 was not cytotoxic against the Vero cell lineage. Finally, we demonstrated that compound 9 acts synergistically with metronidazole against a T. vaginalis metronidazole-resistant isolate. This report reveals the high potential of the triterpenoid derivative 9 as trichomonicidal agent.

Keywords

Triterpenes Trichomonas vaginalis Ursolic acid Betulinic acid Synthetic derivatives 

Notes

Acknowledgements

The authors thank LRNANO/CNANO for the NMR analysis.

Compliance with ethical standards

The Universidade Federal do Rio Grande do Sul Research Ethical Committee approved documents, procedures, and project under authorization CAAE 47423415.5.0000.5347 and 18923. The informed consent for each participant was approved by the Institutional Review Board.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2018_5839_MOESM1_ESM.doc (26 kb)
ESM 1 (DOC 26 kb)

References

  1. Ali V, Nozaki T (2007) Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by “amitochondriate” protozoan parasites. Clin Microbiol Rev 20:164–187.  https://doi.org/10.1128/CMR.00019-06 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bache M, Zschornak MP, Passin S, Kessler J, Wichmann H, Kappler M, Paschke R, Kaluderovic GN, Kommera H, Taubert H, Vordermark D (2011) Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions. Radiat Oncol 6:111.  https://doi.org/10.1186/1748-717X-6-111 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Becker DL, Santos O, Frasson AP, Rigo GV, Macedo AJ, Tasca T (2015) High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil. Infect Genet Evol 34:181–187.  https://doi.org/10.1016/j.meegid.2015.07.005 CrossRefGoogle Scholar
  4. Butler SE, Augostini P, Secor WE (2010) Mycoplasma hominis infection of Trichomonas vaginalis is not associated with metronidazole-resistant trichomoniasis in clinical isolates from the United States. Parasitol Res 107:1023–1027.  https://doi.org/10.1007/s00436-010-1975-y CrossRefPubMedGoogle Scholar
  5. Chen H, Gao Y, Wang A, Zhou X, Zheng Y, Zhou J (2015) Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur J Med Chem 92:648–655.  https://doi.org/10.1016/j.ejmech.2015.01.031 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dalla Vechia L, Gnoatto SCB, Gosmann G (2009) Derivados oleananos e ursanos e sua importância na descoberta de novos fármacos com atividade antitumoral, anti-inflamatória e antioxidante. Quim Nova 32:1245–1252CrossRefGoogle Scholar
  7. Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490CrossRefPubMedGoogle Scholar
  8. Gauthier C, Legault J, Girard-Lalancette K, Mshvildadze V, Pichette A (2009) Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg Med Chem 17:2002–2008.  https://doi.org/10.1016/j.bmc.2009.01.022 CrossRefPubMedGoogle Scholar
  9. Gu W, Hao Y, Zhang G, Wang SF, Miao TT, Zhang KP (2015) Synthesis, in vitro antimicrobial and cytotoxic activities of new carbazole derivatives of ursolic acid. Bioorg Med Chem Lett 25:554–557.  https://doi.org/10.1016/j.bmcl.2014.12.021 CrossRefPubMedGoogle Scholar
  10. Hua SX, Huang RZ, Ye MY, Pan YM, Yao GY, Zhang Y, Wang HS (2015) Design, synthesis and in vitro evaluation of novel ursolic acid derivatives as potential anticancer agents. Eur J Med Chem 95:435–452.  https://doi.org/10.1016/j.ejmech.2015.03.051 CrossRefPubMedGoogle Scholar
  11. Innocente AM, Vieira PB, Frasson AP, Casanova BB, Gosmann G, Gnoatto SC, Tasca T (2014) Anti-Trichomonas vaginalis activity from triterpenoid derivatives. Parasitol Res 113:2933–2940.  https://doi.org/10.1007/s00436-014-3955-0 CrossRefPubMedGoogle Scholar
  12. Jesus JA, Lago JH, Laurenti MD, Yamamoto ES, Passero LF (2015) Antimicrobial activity of oleanolic and ursolic acids: an update. Evid Based Complement Alternat Med 2015:620472.  https://doi.org/10.1155/2015/620472 PubMedPubMedCentralGoogle Scholar
  13. Kissinger P, Adamski A (2013) Trichomoniasis and HIV interactions: a review. Sex Transm Infect 89:426–433.  https://doi.org/10.1136/sextrans-2012-051005 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Liu J (2005) Oleanolic acid and ursolic acid: research perspectives. J Ethnopharmacol 100:92–94.  https://doi.org/10.1016/j.jep.2005.05.024 CrossRefPubMedGoogle Scholar
  15. Mahlo SM, McGaw LJ, Eloff JN (2013) Antifungal activity and cytotoxicity of isolated compounds from leaves of Breonadia salicina. J Ethnopharmacol 148:909–913.  https://doi.org/10.1016/j.jep.2013.05.041 CrossRefPubMedGoogle Scholar
  16. Mazumder K, Tanaka K, Fukase K (2013) Cytotoxic activity of ursolic acid derivatives obtained by isolation and oxidative derivatization. Molecules 18:8929–8944.  https://doi.org/10.3390/molecules18088929 CrossRefPubMedGoogle Scholar
  17. Poole DN, McClelland RS (2013) Global epidemiology of Trichomonas vaginalis. Sex Transm Infect 89:418–422.  https://doi.org/10.1136/sextrans-2013-051075 CrossRefPubMedGoogle Scholar
  18. Rocha TD, Vieira PB, Gnoatto SC, Tasca T, Gosmann G (2012) Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitol Res 110:2551–2556.  https://doi.org/10.1007/s00436-011-2798-1 CrossRefPubMedGoogle Scholar
  19. Schwebke JR, Barrientes FJ (2006) Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother 50:4209–4210.  https://doi.org/10.1128/aac.00814-06 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Silva GN, Maria NR, Schuck DC, Cruz LN, de Moraes MS, Nakabashi M, Graebin C, Gosmann G, Garcia CR, Gnoatto SC (2013) Two series of new semisynthetic triterpene derivatives: differences in anti-malarial activity, cytotoxicity and mechanism of action. Malar J 12:89.  https://doi.org/10.1186/1475-2875-12-89 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Silva GN, Schuck DC, Cruz LN, Moraes MS, Nakabashi M, Gosmann G, Garcia CR, Gnoatto SC (2015) Investigation of antimalarial activity, cytotoxicity and action mechanism of piperazine derivatives of betulinic acid. Tropical Med Int Health 20:29–39.  https://doi.org/10.1111/tmi.12395 CrossRefGoogle Scholar
  22. Silver BJ, Guy RJ, Kaldor JM, Jamil MS, Rumbold AR (2014) Trichomonas vaginalis as a cause of perinatal morbidity: a systematic review and meta-analysis. Sex Transm Dis 41:369–376.  https://doi.org/10.1097/olq.0000000000000134 CrossRefPubMedGoogle Scholar
  23. Sutcliffe S, Neace C, Magnuson NS, Reeves R, Alderete JF (2012) Trichomonosis, a common curable STI, and prostate carcinogenesis—a proposed molecular mechanism. PLoS Pathog 8:e1002801.  https://doi.org/10.1371/journal.ppat.1002801 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Taketa ATC, Gnoatto SCB, Gosmann G, Pires VS, Schenkel EP, Guillaume D (2004) Triterpenoids from Brazilian Ilex species and their in vitro antitrypanosomal activity. J Nat Prod 67:1697–1700.  https://doi.org/10.1021/np040059+ CrossRefPubMedGoogle Scholar
  25. Twu O, Dessi D, Vu A, Mercer F, Stevens GC, de Miguel N, Rappelli P, Cocco AR, Clubb RT, Fiori PL, Johnson PJ (2014) Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. PNAS 111:8179–8184.  https://doi.org/10.1073/pnas.1321884111 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Vieira PB, Giordani RB, Macedo AJ, Tasca T (2015) Natural and synthetic compound anti-Trichomonas vaginalis: an update review. Parasitol Res 114:1249–1261.  https://doi.org/10.1007/s00436-015-4340-3 CrossRefGoogle Scholar
  27. Viikki M, Pukkala E, Nieminen P, Hakama M (2000) Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncol 39:71–75CrossRefPubMedGoogle Scholar
  28. Wang SR, Fang WS (2009) Pentacyclic triterpenoids and their saponins with apoptosis-inducing activity. Curr Top Med Chem 9:1581–1596CrossRefPubMedGoogle Scholar
  29. World Health Organization (2012) Global incidence and prevalence of selected curable sexually transmitted infections—2008. World Health Organization, Geneva.  https://doi.org/10.1016/s0968-8080(12)40660-7 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fernanda Gobbi Bitencourt
    • 1
  • Patrícia de Brum Vieira
    • 1
  • Lucia Collares Meirelles
    • 1
  • Graziela Vargas Rigo
    • 1
  • Elenilson Figueiredo da Silva
    • 2
  • Simone Cristina Baggio Gnoatto
    • 2
  • Tiana Tasca
    • 1
  1. 1.Laboratório de Pesquisa em Parasitologia, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Laboratório de Fitoquímica e Síntese Orgânica, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations