Advertisement

Isolation and molecular identification of free-living amoebae from dishcloths in Tenerife, Canary Islands, Spain

  • María Reyes-Batlle
  • Inés Hernández-Piñero
  • Aitor Rizo-Liendo
  • Atteneri López-Arencibia
  • Ines Sifaoui
  • Carlos J. Bethencourt-Estrella
  • Olfa Chiboub
  • Basilio Valladares
  • José E. PiñeroEmail author
  • Jacob Lorenzo-Morales
Original Paper

Abstract

In this work, the presence of free-living amoebae (FLA) in dishcloths collected from human activity related places was evaluated. Once in the laboratory, 6 cm2 pieces of each dishcloth were cut and washed with Page’s Amoeba Solution (PAS) in sterile tubes. After washing, the dishcloth pieces were removed, and the tubes were centrifuged (1500 rpm for 10 min). The obtained pellets were seeded onto 2% non-nutrient agar (NNA) plates, incubated at room temperature and were monitored daily an inverted microscope. Once clonal cultures were obtained (only one type of FLA observed), molecular analyses were carried out in order to characterize the isolated FLA strains at the genus/genotype level. From the 31 dishcloths which were processed, FLA strains were isolated in NNA plates in 13 the samples (13/31, 42%). However, and due to bacterial overgrowth, only six strains were characterized at the molecular level (PCR and sequencing). Among the PCR positive strains, 83.33% (5/6) of the PCR positive samples belonged to Acanthamoeba genus (80% (4/5) to genotype T4 and 20% (1/5) to genotype T11). Furthermore, one strain was identified as a member of Allovahlkampfia genus using both morphological and molecular approaches. To the best of our knowledge, this is the first report on the isolation of Allovahlkampfia genus from dishcloths and in the Spanish territory. The presence of FLA in dishcloths should raise awareness to improve hygienic strategies in food- and domestic-related environments, in order to prevent contamination with these protozoa, which are able to be pathogenic and even to act as vehicles of other pathogenic agents.

Keywords

Acanthamoeba Allovahlkampfia PCR Dishcloths Canary Islands Spain 

Notes

Funding information

This work was supported by the grants PI18/01380, Fondo Europeo de Desarollo Regional (FEDER) and RICET [project no. RD16/0027/0001 of the programme of Redes Temáticas de Investigación Cooperativa, FIS], Spanish Ministry of Science, Innovation and Universities, Madrid, Spain. MRB was also funded by RICET. ALA and IS were funded by Agustin de Betancourt programme. OC was funded by a grant from Vicerrectorado de Internacionalización, Universidad de La Laguna.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. Booton GC, Visvesvara GS, Byers TJ, Kelly DJ, Fuerst PA (2005) Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. J Clin Microbiol 43(4):1689–1693CrossRefGoogle Scholar
  2. Cabello-Vílchez AM, Mena R, Zuñiga J, Cermeño P, Martín-Navarro CM, González AC, López-Arencibia A, Reyes-Batlle M, Piñero JE, Valladares B, Lorenzo-Morales J (2014) Endosymbiotic Mycobacterium chelonae in a Vermamoeba vermiformis strain isolated from the nasal mucosa of an HIV patient in Lima, Peru. Exp Parasitol 145(Supl):S127–S130CrossRefGoogle Scholar
  3. Chavatte N, Baré J, Lambrecht E, Van Damme I, Vaerewijck M, Sabbe K, Houf K (2014) Co-occurrence of free-living protozoa and foodborne pathogens on dishcloths: implications for food safety. Int J Food Microbiol 191:89–96.  https://doi.org/10.1016/j.ijfoodmicro.2014.08.030 CrossRefGoogle Scholar
  4. Geisen S, Fiore-Donno AM, Walochnik J, Bonkowski M (2014) Acanthamoeba everywhere: high diversity of Acanthamoeba in soils. Parasitol Res 113(9):3151–3158.  https://doi.org/10.1007/s00436-014-3976-8 CrossRefGoogle Scholar
  5. Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433.  https://doi.org/10.1128/CMR.17.2.413 CrossRefGoogle Scholar
  6. Guimaraes AJ, Gomes KX, Cortines JR, Peralta JM, Peralta RH (2016) Acanthamoeba spp. as a universal host for pathogenic microorganisms: one bridge from environment to host virulence. Microbiol Res 193:30–38.  https://doi.org/10.1016/j.micres.2016.08.001 CrossRefGoogle Scholar
  7. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549CrossRefGoogle Scholar
  8. Lasjerdi Z, Niyyati M, Lorenzo-Morales J, Haghighi A, Taghipour N (2015) Ophthalmology hospital wards contamination to pathogenic free living amoebae in Iran. Acta Parasitol 60(3):417–422.  https://doi.org/10.1515/ap-2015-0057 CrossRefGoogle Scholar
  9. Lorenzo-Morales J, Monteverde-Miranda CA, Jiménez C, Tejedor ML, Valladares B, Ortega-Rivas A (2005). Evaluation of Acanthamoeba isolates from environmental sources in Tenerife, Canary Islands, Spain. Ann Agric Environ Med 12(2):233–236Google Scholar
  10. Lorenzo-Morales J, Morcillo-Laiz R, Martín-Navarro CM, López-Vélez R, López-Arencibia A, Arnalich-Montiel F, Maciver SK, Valladares B, Martínez-Carretero E, Lorenzo-Morales J, Morcillo-Laiz R, Martín-Navarro CM (2011) López-Vélez (2011) Acanthamoeba keratitis due to genotype T11 in a rigid gas permeable contact lens wearer in Spain. Cont Lens Anterior Eye 34(2):83–86.  https://doi.org/10.1016/j.clae.2010.10.007. CrossRefGoogle Scholar
  11. Lorenzo-Morales J, Martín-Navarro CM, López-Arencibia A, Arnalich-Montiel F, Piñero JE, Valladares B (2013) Acanthamoeba keratitis: an emerging disease gathering importance worldwide?. Trends Parasitol 29(4):181–187Google Scholar
  12. Lorenzo-Morales J, Khan NA, Walochnik J (2015) An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 22:10CrossRefGoogle Scholar
  13. Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16(2):273–307Google Scholar
  14. Niyyati M, Lorenzo-Morales J, Rezaeian M, Martin-Navarro CM, Haghi AM, Maciver SK, Valladares B (2009) Isolation of Balamuthia mandrillaris from urban dust, free of known infectious involvement. Parasitol Res 106(1):279–281CrossRefGoogle Scholar
  15. Pagnier I, Yutin N, Croce O, Makarova KS, Wolf YI, Benamar S, Raoult D, Koonin EV, La Scola B (2015a) Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biol Direct 31:10–13.  https://doi.org/10.1186/s13062-015-0043-z. Google Scholar
  16. Pagnier I, Valles C, Raoult D, La Scola B (2015b) Isolation of Vermamoeba vermiformis and associated bacteria in hospital water. Microb Pathog 80:14–20.  https://doi.org/10.1016/j.micpath.2015.02.006 CrossRefGoogle Scholar
  17. Qvarnstrom Y, da Silva AJ, Schuster FL, Gelman BB, Visvesvara GS (2009) Molecular confirmation of Sappinia pedata as a causative agent of amoebic encephalitis. J Infect Dis 199(8):1139–1142CrossRefGoogle Scholar
  18. Reyes-Batlle M, Niyyati M, Martín-Navarro CM, López-Arencibia A, Valladares B, Martínez-Carretero E, Piñero JE, Lorenzo-Morales J (2015) Unusual Vermamoeba vermiformis strain isolated from snow in Mount Teide, Tenerife, Canary Islands, Spain. NBM 3:189–192Google Scholar
  19. Reyes-Batlle M, Girbau C, López-Arencibia A, Sifaoui I, Liendo AR, Bethencourt Estrella CJ, García Méndez AB, Chiboub O, Hajaji S, Fernández-Astorga A, Valladares B, Martínez-Carretero E, Piñero JE, Lorenzo-Morales J (2017a) Variation in Campylobacter jejuni culturability in presence of Acanthamoeba castellanii Neff. Exp Parasitol 183(Supl):178–181.  https://doi.org/10.1016/j.exppara.2017.09.005 CrossRefGoogle Scholar
  20. Reyes-Batlle M, Martín-Rodríguez AJ, López-Arencibia A, Sifaoui I, Liendo AR, Bethencourt Estrella CJ, García Méndez AB, Chiboub O, Hajaji S, Valladares B, Martínez-Carretero E, Piñero JE, Lorenzo-Morales J (2017b) In vitro interactions of Acanthamoeba castellanii Neff and Vibrio harveyi. Exp Parasitol 183(Supl):167–170.  https://doi.org/10.1016/j.exppara.2017.09.003 CrossRefGoogle Scholar
  21. Scheid P (2014) Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. Parasitol Res 113:2407–2414.  https://doi.org/10.1007/s00436-014-3932-7 CrossRefGoogle Scholar
  22. Scheid P, Schwarzenberger R (2012) Acanthamoeba spp. as vehicle and reservoir of adenoviruses. Parasitol Res 111:479–485.  https://doi.org/10.1007/s00436-012-2828-7 CrossRefGoogle Scholar
  23. Scheid P, Zöller L, Pressmar S, Richard G, Michel R (2008) An extraordinary endocytobiont in Acanthamoeba sp. isolated from a patient with keratitis. Parasitol Res 102(5):945–950CrossRefGoogle Scholar
  24. Schroeder JM, Booton GC, Hay J (2001) Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge. J Clin Microbiol 39(5):1903–1911.  https://doi.org/10.1128/JCM.39.5.1903-1911.2001 CrossRefGoogle Scholar
  25. Shuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34:1001–1027.  https://doi.org/10.1016/j.ijpara.2004.06.004 CrossRefGoogle Scholar
  26. Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vectors 5:6CrossRefGoogle Scholar
  27. Smirnov A, Chao E, Nassonova E, Cavalier-Smith T (2011) Revised classification of non-mycetozoan naked lobose amoebae (Amoebozoa). Protist 162(4):545–570CrossRefGoogle Scholar
  28. Thomas V, McDonnell G, Denyer SP, Maillard J-Y (2010) Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 34:231–259.  https://doi.org/10.1111/j.1574-6976.2009.00190.x CrossRefGoogle Scholar
  29. Tolba ME, Huseein EA, Farrag HM, Mohamed Hel D, Kobayashi S, Suzuki J, Ali TA, Sugano S (2016) Allovahlkampfia spelaea Causing Keratitis in Humans. PLoS Negl Trop Dis 10(7):e0004841.  https://doi.org/10.1371/journal.pntd.0004841 CrossRefGoogle Scholar
  30. Torvinen E, Suomalainen S, Lehtola MJ, Miettinen IT, Zacheus O, Paulin L, Katila ML, Martikainen PJ (2004) Mycobacteria in water and loose deposits of drinking water distribution systems in Finland. Appl Environ Microbiol 70(4):1973–1981CrossRefGoogle Scholar
  31. Trabelsi H, Dendana F, Sellami A, Sellami H, Cheikhrouhou F, Neji S, Makni F, Ayadi A (2012) Pathogenic free-living amoebae: epidemiology and clinical review. Pathol Biol (Paris) 60(6):399–405CrossRefGoogle Scholar
  32. Tsvetkova N, Schild M, Panaiotov S, Kurdova-Mintcheva R, Gottstein B, Walochnik J, Aspöck H, Lucas MS, Müller N (2004) The identification of free-living environmental isolates of amoebae from Bulgaria. Parasitol Res 92(5):405–413.  https://doi.org/10.1007/s00436-003-1052-x CrossRefGoogle Scholar
  33. Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 50(1):1–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • María Reyes-Batlle
    • 1
  • Inés Hernández-Piñero
    • 1
  • Aitor Rizo-Liendo
    • 1
  • Atteneri López-Arencibia
    • 1
  • Ines Sifaoui
    • 1
    • 2
  • Carlos J. Bethencourt-Estrella
    • 1
  • Olfa Chiboub
    • 1
    • 2
  • Basilio Valladares
    • 1
  • José E. Piñero
    • 1
    Email author
  • Jacob Lorenzo-Morales
    • 1
  1. 1.Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaLa LagunaSpain
  2. 2.Laboratoire Matériaux-Molécules et Applications, IPESTUniversity of CarthageLa MarsaTunisia

Personalised recommendations