Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Metabolic signatures of Besnoitia besnoiti-infected endothelial host cells and blockage of key metabolic pathways indicate high glycolytic and glutaminolytic needs of the parasite

Abstract

Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle with a significant economic impact on cattle industry. During acute infection, fast-proliferating tachyzoites are continuously formed mainly in endothelial host cells of infected animals. Given that offspring formation is a highly energy and cell building block demanding process, the parasite needs to exploit host cellular metabolism to meet its metabolic demands. Here, we analyzed the metabolic signatures of B. besnoiti-infected endothelial host cells and aimed to influence parasite proliferation by inhibitors of specific metabolic pathways. The following inhibitors were tested: fluoro 2-deoxy-d-glucose and 2-deoxy-d-glucose (FDG, DG; inhibitors of glycolysis), 6-diazo-5-oxo-l-norleucin (DON; inhibitor of glutaminolysis), dichloroacetate (DCA; inhibitor of pyruvate dehydrogenase kinase which favorites channeling of glucose carbons into the TCA cycle) and adenosine-monophosphate (AMP; inhibitor of ribose 5-P synthesis). Overall, B. besnoiti infections of bovine endothelial cells induced a significant and infection rate-dependent increase of glucose, lactate, glutamine, glutamate, pyruvate, alanine, and serine conversion rates which together indicate a parasite-triggered up-regulation of glycolysis and glutaminolysis. Thus, addition of DON, FDG, and DG into the cultivation medium of B. besnoiti infected endothelial cells led to a dose-dependent inhibition of parasite replication (4 μM DON, 99.5 % inhibition; 2 mM FDG, 99.1 % inhibition; 2 mM DG, 93 % inhibition; and 8 mM DCA, 71.9 % inhibition). In contrast, AMP had no significant effects on total tachyzoite production up to a concentration of 20 mM. Together, these data may open new strategies for the development of therapeutics for B. besnoiti infections.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

  2. Aledo JC (2004) Glutamine breakdown in rapidly dividing cells: waste or investment? Bioessays 26:778–785

  3. Alvarez-Garcia G, Frey CF, Mora LM, Schares G (2013) A century of bovine besnoitiosis: an unknown disease re-emerging in Europe. Trends Parasitol 29:407–415

  4. Bano N, Romano JD, Jayabalasingham B, Coppens I (2007) Cellular interactions of Plasmodium liver stage with its host mammalian cell. Int J Parasitol 37:1329–1341

  5. Bansal D, Bhatti HS, Sehgal R (2005) Role of cholesterol in parasitic infections. Lipids Health Dis 4:10

  6. Basso W, Lesser M, Grimm F, Hilbe M, Sydler T, Trosch L, Ochs H, Braun U, Deplazes P (2013) Bovine besnoitiosis in Switzerland: imported cases and local transmission. Vet Parasitol 198:265–273

  7. Battaglia FC (2000) Glutamine and glutamate exchange between the fetal liver and the placenta. J Nutr 130:974–977

  8. Blume M, Rodriguez-Contreras D, Landfear S, Fleige T, Soldati-Favre D, Lucius R, Gupta N (2009) Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glutaminolysis. Proc Natl Acad Sci U S A 106:12998–13003

  9. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

  10. Chaudhary K, Darling JA, Fohl LM, Sullivan WJ Jr, Donald RG, Pfefferkorn ER, Ullman B, Roos DS (2004) Purine salvage pathways in the apicomplexan parasite Toxoplasma gondii. J Biol Chem 279:31221–31227

  11. Coppens I (2014) Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int J Parasitol 44:109–120

  12. Coppens I, Sinai AP, Joiner KA (2000) Toxoplasma gondii exploits host low-density lipoprotein receptor-mediated endocytosis for cholesterol acquisition. J Cell Biol 149:167–180

  13. Cortes H, Leitao A, Vidal R, Vila-Vicosa MJ, Ferreira ML, Caeiro V, Hjerpe CA (2005) Besnoitiosis in bulls in Portugal. Vet Rec 157:262–264

  14. Cortes HC, Reis Y, Waap H, Vidal R, Soares H, Marques I, Pereira da Fonseca I, Fazendeiro I, Ferreira ML, Caeiro V, Shkap V, Hemphill A, Leitao A (2006) Isolation of Besnoitia besnoiti from infected cattle in Portugal. Vet Parasitol 141:226–233

  15. Cortes HC, Mueller N, Esposito M, Leitao A, Naguleswaran A, Hemphill A (2007) In vitro efficacy of nitro- and bromo-thiazolyl-salicylamide compounds (thiazolides) against Besnoitia besnoiti infection in Vero cells. Parasitology 134:975–985

  16. Cortes HC, Muller N, Boykin D, Stephens CE, Hemphill A (2011) In vitro effects of arylimidamides against Besnoitia besnoiti infection in Vero cells. Parasitology 138:583–592

  17. Cortes H, Leitao A, Gottstein B, Hemphill A (2014) A review on bovine besnoitiosis: a disease with economic impact in herd health management, caused by Besnoitia besnoiti (Franco and Borges, 1916). Parasitology 141:1406–1417

  18. Cytel Studio StatXact Vers. 9.0.0 (2010) Statistical Software for Exact Nonparametric Inference, User Manual. CYTEL Inc, Cambridge

  19. Dixon WJ (chief editor) (1993). BMDP statistical software manual, volume 1 and 2. University of California Press, Berkeley, Los Angeles, London

  20. Eck HP, Drings P, Droge W (1989) Plasma glutamate levels, lymphocyte reactivity and death rate in patients with bronchial carcinoma. J Cancer Res Clin Oncol 115:571–574

  21. Ehrenman K, Wanyiri JW, Bhat N, Ward HD, Coppens I (2013) Cryptosporidium parvum scavenges LDL-derived cholesterol and micellar cholesterol internalized into enterocytes. Cell Microbiol 15:1182–1197

  22. Eigenbrodt E, Glossmann H (1980) Glycolysis—one of the keys to cancer? Trends Pharmacol Sci 1:240–245

  23. European Food Safety Authority (2010) Bovine besnoitiosis: an emerging disease in Europe. EFSA J 8:1499

  24. Fernandez-Garcia A, Risco-Castillo V, Pedraza-Diaz S, Aguado-Martinez A, Alvarez-Garcia G, Gomez-Bautista M, Collantes-Fernandez E, Ortega-Mora LM (2009) First isolation of Besnoitia besnoiti from a chronically infected cow in Spain. J Parasitol 95:474–476

  25. Furlong ST (1989) Sterols of parasitic protozoa and helminths. Exp Parasitol 68:482–485

  26. Gardner PR, Raineri I, Epstein LB, White CW (1995) Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 270:13399–13405

  27. Gentile A, Militerno G, Schares G, Nanni A, Testoni S, Bassi P, Gollnick NS (2012) Evidence for bovine besnoitiosis being endemic in Italy—first in vitro isolation of Besnoitia besnoiti from cattle born in Italy. Vet Parasitol 184:108–115

  28. Gero AM, O'Sullivan WJ (1990) Purines and pyrimidines in malarial parasites. Blood Cells 16:467–484

  29. Gollnick NS, Gentile A, Schares G (2010) Diagnosis of bovine besnoitiosis in a bull born in Italy. Vet Rec 166:599

  30. Gordon EB, Hart GT, Tran TM, Waisberg M, Akkaya M, Kim AS, Hamilton SE, Pena M, Yazew T, Qi CF, Lee CF, Lo YC, Miller LH, Powell JD, Pierce SK (2015) Targeting glutamine metabolism rescues mice from late-stage cerebral malaria. Proc Natl Acad Sci U S A 112:13075–13080

  31. Hamid PH, Hirzmann J, Kerner K, Gimpl G, Lochnit G, Hermosilla CR, Taubert A (2015) Eimeria bovis infection modulates endothelial host cell cholesterol metabolism for successful replication. Vet Res 46:100

  32. Harjes U, Bensaad K, Harris AL (2012) Endothelial cell metabolism and implications for cancer therapy. Br J Cancer 107:1207–1212

  33. Hofer A, Steverding D, Chabes A, Brun R, Thelander L (2001) Trypanosoma brucei CTP synthetase: a target for the treatment of African sleeping sickness. Proc Natl Acad Sci U S A 98:6412–6416

  34. Hornok S, Fedak A, Baska F, Hofmann-Lehmann R, Basso W (2014) Bovine besnoitiosis emerging in Central-Eastern Europe, Hungary. Parasit Vectors 7:20

  35. Hugo F, Mazurek S, Zander U, Eigenbrodt E (1992) In vitro effect of extracellular AMP on MCF-7 breast cancer cells: inhibition of glycolysis and cell proliferation. J Cell Physiol 153:539–549

  36. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

  37. Kim KH, Rodriguez AM, Carrico PM, Melendez JA (2001) Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase. Antioxid Redox Signal 3:361–373

  38. Krug EC, Marr JJ, Berens RL (1989) Purine metabolism in Toxoplasma gondii. J Biol Chem 264:10601–10607

  39. Krützfeldt A, Spahr R, Mertens S, Siegmund B, Piper HM (1990) Metabolism of exogenous substrates by coronary endothelial cells in culture. J Mol Cell Cardiol 22:1393–1404

  40. Labaied M, Jayabalasingham B, Bano N, Cha SJ, Sandoval J, Guan G, Coppens I (2011) Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver. Cell Microbiol 13:569–586

  41. Leighton B, Curi R, Hussein A, Newsholme EA (1987) Maximum activities of some key enzymes of glycolysis, glutaminolysis, Krebs cycle and fatty acid utilization in bovine pulmonary endothelial cells. FEBS Lett 225:93–96

  42. Lin SS, Blume M, von Ahsen N, Gross U, Bohne W (2011) Extracellular Toxoplasma gondii tachyzoites do not require carbon source uptake for ATP maintenance, gliding motility and invasion in the first hour of their extracellular life. Int J Parasitol 41:835–841

  43. MacRae JI, Sheiner L, Nahid A, Tonkin C, Striepen B, McConville MJ (2012) Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe 12:682–692

  44. Márquez J, Matés JM, Alonso FJ, Martin-Rufián M, Lobo C, Campos-Sandoval JA (2015) Canceromics studies unravel tumor’s glutamine addiction after metabolic reprogramming. In: Mazurek S, Shoshan M (eds) Tumor cell metabolism—pathways, regulation and biology. Springer Wien, Heidelberg, New York, Dordrecht, London, pp: 257-286

  45. Matias C, Nott SE, Bagnara AS, O'Sullivan WJ, Gero AM (1990) Purine salvage and metabolism in Babesia bovis. Parasitol Res 76:207–213

  46. Matsuno T, Goto I (1992) Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma. Cancer Res 52:1192–1194

  47. Mazurek S, Michel A, Eigenbrodt E (1997) Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates. J Biol Chem 272:4941–4952

  48. Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E (2001) Metabolic cooperation between different oncogenes during cell transformation: interaction between activated ras and HPV-16 E7. Oncogene 20:6891–6898

  49. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15:300–308

  50. McKeehan WL (1982) Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 6:635–650

  51. Medina MA, Nunez de Castro I (1990) Glutaminolysis and glycolysis interactions in proliferant cells. Int J Biochem 22:681–683

  52. Moine E, Denevault-Sabourin C, Debierre-Grockiego F, Silpa L, Gorgette O, Barale JC, Jacquiet P, Brossier F, Gueiffier A, Dimier-Poisson I, Enguehard-Gueiffier C (2015) A small-molecule cell-based screen led to the identification of biphenylimidazoazines with highly potent and broad-spectrum anti-apicomplexan activity. Eur J Med Chem 89:386–400

  53. Munoz-Caro T, Hermosilla C, Silva LM, Cortes H, Taubert A (2014) Neutrophil extracellular traps as innate immune reaction against the emerging apicomplexan parasite Besnoitia besnoiti. PLoS One 9:e91415

  54. Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T (2010) Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol 299:L513–L522

  55. Perrotto J, Keister DB, Gelderman AH (1971) Incorporation of precursors into Toxoplasma DNA. J Protozool 18:470–473

  56. Polet F, Feron O (2013) Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med 273:156–165

  57. Polonais V, Soldati-Favre D (2010) Versatility in the acquisition of energy and carbon sources by the Apicomplexa. Biol Cell 102:435–445

  58. Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, Dunn M, Hung SS, Kawahara F, Miranda-Saavedra D, Malas TB, Mourier T, Naghra H, Nair M, Otto TD, Rawlings ND, Rivailler P, Sanchez-Flores A, Sanders M, Subramaniam C, Tay YL, Woo Y, Wu X, Barrell B, Dear PH, Doerig C, Gruber A, Ivens AC, Parkinson J, Rajandream MA, Shirley MW, Wan KL, Berriman M, Tomley FM, Pain A (2014) Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Res 24:1676–1685

  59. Samish M, Shkap V, Bin H, Pipano EM (1988) Cultivation of Besnoitia besnoiti in four tick cell lines. Int J Parasitol 18:291–296

  60. Schares G, Basso W, Majzoub M, Cortes HC, Rostaher A, Selmair J, Hermanns W, Conraths FJ, Gollnick NS (2009) First in vitro isolation of Besnoitia besnoiti from chronically infected cattle in Germany. Vet Parasitol 163:315–322

  61. Schwartzman JD, Pfefferkorn ER (1982) Toxoplasma gondii: purine synthesis and salvage in mutant host cells and parasites. Exp Parasitol 53:77–86

  62. Shkap V, Bin H, Lebovich B, Pipano E (1991) Besnoitia besnoiti: quantitative in vitro studies. Vet Parasitol 39:207–213

  63. Striepen B, Pruijssers AJ, Huang J, Li C, Gubbels MJ, Umejiego NN, Hedstrom L, Kissinger JC (2004) Gene transfer in the evolution of parasite nucleotide biosynthesis. Proc Natl Acad Sci U S A 101:3154–3159

  64. Sutendra G, Michelakis ED (2013) Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front Oncol 3:38

  65. Taubert A, Wimmers K, Ponsuksili S, Jimenez CA, Zahner H, Hermosilla C (2010) Microarray-based transcriptional profiling of Eimeria bovis-infected bovine endothelial host cells. Vet Res 41:70

  66. Tretyakov AV, Farber HW (1995) Endothelial cell tolerance to hypoxia. Potential role of purine nucleotide phosphates. J Clin Invest 95:738–744

  67. Uyemura SA, Luo S, Vieira M, Moreno SN, Docampo R (2004) Oxidative phosphorylation and rotenone-insensitive malate- and NADH-quinone oxidoreductases in Plasmodium yoelii yoelii mitochondria in situ. J Biol Chem 279:385–393

  68. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

  69. Weisman GA, Lustig KD, Lane E, Huang NN, Belzer I, Friedberg I (1988) Growth inhibition of transformed mouse fibroblasts by adenine nucleotides occurs via generation of extracellular adenosine. J Biol Chem 263:12367–12372

  70. Yu Y, Zhang H, Guo F, Sun M, Zhu G (2014) A unique hexokinase in Cryptosporidium parvum, an apicomplexan pathogen lacking the Krebs cycle and oxidative phosphorylation. Protist 165:701–714

  71. Zhu G (2004) Current progress in the fatty acid metabolism in Cryptosporidium parvum. J Eukaryot Microbiol 51:381–388

  72. Zwerschke W, Mazurek S, Stockl P, Hutter E, Eigenbrodt E, Jansen-Durr P (2003) Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J 376:403–411

Download references

Acknowledgments

The authors thank A. Wehrend (Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus Liebig University, Giessen, Germany) for the continuous supply of bovine umbilical cords. We also acknowledge the outstanding work of B. Hofmann in all cell culture experiments.

Author information

Correspondence to A. Taubert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taubert, A., Hermosilla, C., Silva, L.M.R. et al. Metabolic signatures of Besnoitia besnoiti-infected endothelial host cells and blockage of key metabolic pathways indicate high glycolytic and glutaminolytic needs of the parasite. Parasitol Res 115, 2023–2034 (2016). https://doi.org/10.1007/s00436-016-4946-0

Download citation

Keywords

  • Coccidia
  • Metabolic signature
  • Glycolysis
  • Glutaminolysis
  • DON
  • 2-Deoxy-d-glucose