Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular cloning and expression of phosphoglycerate dehydrogenase and phosphoserine aminotransferase in the serine biosynthetic pathway from Acanthamoeba castellanii

Abstract

Free-living amoebae of the genus Acanthamoeba are widespread protozoans that can cause serious infectious diseases. This study characterised phosphoglycerate dehydrogenase (PGDH) and phosphoserine aminotransferase (PSAT) in the phosphorylated serine biosynthetic pathway of Acanthamoeba castellanii. The PGDH gene encodes a protein of 442 amino acids with a calculated molecular weight of 47.7 kDa and an isoelectric point (pI) of 7.64. Meanwhile, the PSAT gene encodes a protein of 394 amino acids with a calculated molecular weight of 43.8 kDa and a pI of 5.80. Confocal microscopy suggests that PGDH is mainly diffused in the cytoplasm, whereas PSAT is located in the inner part of the cell membrane. The messenger RNA (mRNA) expression levels of PGDH and PSAT vary depending on growth state under consecutive culture conditions. No significant changes in the mRNA expression levels of both PGDH and PSAT occur after the incubation of l-serine with Acanthamoeba. This result indicates that exogenous serine exerts no influence on the expression of these genes and that the so-called feedback inhibition of both PGDH and PSAT in Acanthamoeba differs from that in bacteria or other organisms. We propose that the enzymes in the phosphorylated serine biosynthetic pathway function in amoeba growth and proliferation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ali V, Hashimoto T, Shigeta Y, Nozaki T (2004) Molecular and biochemical characterization of D-phosphoglycerate dehydrogenase from Entamoeba histolytica. A unique enteric protozoan parasite that possesses both phosphorylated and nonphosphorylated serine metabolic pathways. Eur J Biochem FEBS 271(13):2670–2681. doi:10.1111/j.1432-1033.2004.04195.x

  2. Ali V, Nozaki T (2006) Biochemical and functional characterization of phosphoserine aminotransferase from Entamoeba histolytica, which possesses both phosphorylated and non-phosphorylated serine metabolic pathways. Mol Biochem Parasitol 145(1):71–83. doi:10.1016/j.molbiopara.2005.09.008

  3. Baek JY, Jun DY, Taub D, Kim YH (2003) Characterization of human phosphoserine aminotransferase involved in the phosphorylated pathway of L-serine biosynthesis. Biochem J 373(Pt 1):191–200. doi:10.1042/BJ20030144

  4. Basurko MJ, Marche M, Darriet M, Cassaigne A (1999) Phosphoserine aminotransferase, the second step-catalyzing enzyme for serine biosynthesis. IUBMB life 48(5):525–529. doi:10.1080/713803557

  5. Cabello-Vilchez AM et al (2014) Voriconazole as a first-line treatment against potentially pathogenic Acanthamoeba strains from Peru. Parasitol Res 113(2):755–759. doi:10.1007/s00436-013-3705-8

  6. Chavez-Munguia B, Salazar-Villatoro L, Lagunes-Guillen A, Omana-Molina M, Espinosa-Cantellano M, Martinez-Palomo A (2013) Acanthamoeba castellanii cysts: new ultrastructural findings. Parasitol Res 112(3):1125–1130. doi:10.1007/s00436-012-3261-7

  7. Cheng XJ, Yoshihara E, Takeuchi T, Tachibana H (2004) Molecular characterization of peroxiredoxin from Entamoeba moshkovskii and a comparison with Entamoeba histolytica. Mol Biochem Parasitol 138(2):195–203. doi:10.1016/j.molbiopara.2004.08.009

  8. Clarke DW, Niederkorn JY (2006) The pathophysiology of Acanthamoeba keratitis. Trends Parasitol 22(4):175–180. doi:10.1016/j.pt.2006.02.004

  9. Ezz Eldin HM, Sarhan RM (2014) Cytotoxic effect of organic solvents and surfactant agents on Acanthamoeba castellanii cysts. Parasitol Res 113(5):1949–1953. doi:10.1007/s00436-014-3845-5

  10. Gillin FD, Diamond LS (1980) Attachment of Entamoeba histolytica to glass in a defined maintenance medium: specific requirement for cysteine and ascorbic acid. J Protozool 27(4):474–478

  11. Gillin FD, Diamond LS (1981) Entamoeba histolytica and Giardia lamblia: effects of cysteine and oxygen tension on trophozoite attachment to glass and survival in culture media. Exp Parasitol 52(1):9–17

  12. Kobayashi T, Mito T, Watanabe N, Suzuki T, Shiraishi A, Ohashi Y (2012) Use of 5-cyano-2,3-ditolyl-tetrazolium chloride staining as an indicator of biocidal activity in a rapid assay for anti-Acanthamoeba agents. J Clin Microbiol 50(5):1606–1612. doi:10.1128/JCM. 06461-11

  13. Locasale JW et al (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43(9):869–874. doi:10.1038/ng.890

  14. Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16(2):273–307

  15. McKitrick JC, Pizer LI (1980) Regulation of phosphoglycerate dehydrogenase levels and effect on serine synthesis in Escherichia coli K-12. J Bacteriol 141(1):235–245

  16. Moon EK, Chung DI, Hong YC, Kong HH (2009) Autophagy protein 8 mediating autophagosome in encysting Acanthamoeba. Mol Biochem Parasitol 168(1):43–48. doi:10.1016/j.molbiopara.2009.06.005

  17. Pollari S et al (2011) Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat 125(2):421–430. doi:10.1007/s10549-010-0848-5

  18. Possemato R et al (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–U119. doi:10.1038/Nature10350

  19. Saito K, Takagi Y, Ling HC, Takahashi H, Noji M (1997) Molecular cloning, characterization and expression of cDNA encoding phosphoserine aminotransferase involved in phosphorylated pathway of serine biosynthesis from spinach. Plant Mol Biol 33(2):359–366

  20. Saski R, Pizer LI (1975) Regulatory properties of purified 3-phosphoglycerate dehydrogenase from Bacillus subtilis. Eur J Biochem FEBS 51(2):415–427

  21. Sifaoui I et al (2013) Activity assessment of Tunisian olive leaf extracts against the trophozoite stage of Acanthamoeba. Parasitol Res 112(8):2825–2829. doi:10.1007/s00436-013-3453-9

  22. Slaughter JC, Davies DD (1968) Inhibition of 3-phosphoglycerate dehydrogenase by l-serine. Biochem J 109(5):749–755

  23. Sugimoto E, Pizer LI (1968) The mechanism of end product inhibition of serine biosynthesis. I. Purification and kinetics of phosphoglycerate dehydrogenase. J Biol Chem 243(9):2081–2089

  24. Tabatabaie L, Klomp LW, Berger R, de Koning TJ (2010) L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab 99(3):256–262. doi:10.1016/j.ymgme.2009.10.012

  25. Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M (2000) Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J Biotechnol 79(2):147–159

  26. Vie N et al (2008) Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and increases chemoresistance of colon cancer cells. Mol Cancer 7:14. doi:10.1186/1476-4598-7-14

Download references

Acknowledgments

This work was supported by the Doctoral Fund of the Ministry of Education of China (20110071110042), NSFC (81171594) and MEXT KAKENHI (23117009). We are grateful to Ke Qiao from Shanghai Medical School, Fudan University, for sharing her excellent technical expertise in confocal microscopy.

Conflict of interest

All authors declare no conflict of interests.

Author information

Correspondence to Xunjia Cheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Wu, D., Tachibana, H. et al. Molecular cloning and expression of phosphoglycerate dehydrogenase and phosphoserine aminotransferase in the serine biosynthetic pathway from Acanthamoeba castellanii . Parasitol Res 114, 1387–1395 (2015). https://doi.org/10.1007/s00436-015-4317-2

Download citation

Keywords

  • Acanthamoeba castellanii
  • Phosphoglycerate dehydrogenase
  • Phosphoserine aminotransferase
  • Serine biosynthetic pathway