Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Identification, immunolocalization, and characterization analyses of an exopeptidase of papain superfamily, (cathepsin C) from Clonorchis sinensis


Cathepsin C is an important exopeptidase of papain superfamily and plays a number of great important roles during the parasitic life cycle. The amino acid sequence of cathepsin C from Clonorchis sinensis (C. sinensis) showed 54, 53, and 49 % identities to that of Schistosoma japonicum, Schistosoma mansoni, and Homo sapiens, respectively. Phylogenetic analysis utilizing the sequences of papain superfamily of C. sinensis demonstrated that cathepsin C and cathepsin Bs came from a common ancestry. Cathepsin C of C. sinensis (Cscathepsin C) was identified as an excretory/secretory product by Western blot analysis. The results of transcriptional level and translational level of Cscathepsin C at metacercaria stage were higher than that at adult worms. Immunolocalization analysis indicated that Cscathepsin C was specifically distributed in the suckers (oral sucker and ventral sucker), eggs, vitellarium, intestines, and testis of adult worms. In the metacercaria, it was mainly detected on the cyst wall and excretory bladder. Combining with the results mentioned above, it implies that Cscathepsin C may be an essential proteolytic enzyme for proteins digestion of hosts, nutrition assimilation, and immune invasion of C. sinensis. Furthermore, it may be a potential diagnostic antigen and drug target against C. sinensis infection.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Adkison AM, Raptis SZ, Kelley DG, Pham CT (2002) Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 109(3):363–371

  2. Allende LM, Garcia-Perez MA, Moreno A, Corell A, Carasol M et al (2001) Cathepsin C gene: first compound heterozygous patient with Papillon-Lefevre syndrome and a novel symptomless mutation. Hum Mutat 17(2):152–153

  3. Becker MM, Harrop SA, Dalton JP, Kalinna BH, McManus DP, Brindley PJ (1995) Cloning and characterization of the Schistosoma japonicum aspartic proteinase involved in hemoglobin degradation. J Biol Chem 270(41):24496–24501

  4. Berasain P, Goni F, McGonigle S, Dowd A, Dalton JP et al (1997) Proteinases secreted by Fasciola hepatica degrade extracellular matrix and basement membrane components. J Parasitol 83(1):1–5

  5. Bogitsh BJ, Dresden MH (1983) Fluorescent histochemistry of acid proteases in adult Schistosoma mansoni and Schistosoma japonicum. J Parasitol 69(1):106–110

  6. Bondebjerg J, Fuglsang H, Valeur KR, Pedersen J, Naerum L (2006) Dipeptidyl nitriles as human dipeptidyl peptidase I inhibitors. Bioorg Med Chem Lett 16(13):3614–3617

  7. Caffrey CR, Steverding D (2009) Kinetoplastid papain-like cysteine peptidases. Mol Biochem Parasitol 167(1):12–19

  8. Chen W, Wang X, Li X, Lv X, Zhou C et al (2011) Molecular characterization of cathepsin B from Clonorchis sinensis excretory/secretory products and assessment of its potential for serodiagnosis of clonorchiasis. Parasit Vectors 4:149

  9. Dalton JP, Brindley PJ, Knox DP, Brady CP, Hotez PJ et al (2003) Helminth vaccines: from mining genomic information for vaccine targets to systems used for protein expression. Int J Parasitol 33(5–6):621–640

  10. Dalton JP, Hola-Jamriska L, Brindley PJ (1995) Asparaginyl endopeptidase activity in adult Schistosoma mansoni. Parasitology 111(Pt 5):575–580

  11. Deu E, Leyva MJ, Albrow VE, Rice MJ, Ellman JA, Bogyo M (2010) Functional studies of Plasmodium falciparum dipeptidyl aminopeptidase I using small molecule inhibitors and active site probes. Chem Biol 17(8):808–819

  12. Dolenc I, Turk B, Kos J, Turk V (1996) Interaction of human cathepsin C with chicken cystatin. FEBS Lett 392(3):277–280

  13. Dolenc I, Turk B, Pungercic G, Ritonja A, Turk V (1995) Oligomeric structure and substrate induced inhibition of human cathepsin C. J Biol Chem 270(37):21626–21631

  14. Hart TC, Hart PS, Bowden DW, Michalec MD, Callison SA et al (1999) Mutations of the cathepsin C gene are responsible for Papillon-Lefevre syndrome. J Med Genet 36(12):881–887

  15. Hart TC, Hart PS, Michalec MD, Zhang Y, Firatli E et al (2000) Haim-Munk syndrome and Papillon-Lefevre syndrome are allelic mutations in cathepsin C. J Med Genet 37(2):88–94

  16. He L, Ren M, Chen X, Wang X, Li S et al (2014) Biochemical and immunological characterization of annexin B30 from Clonorchis sinensis excretory/secretory products. Parasitol Res 113(7):2743–2755

  17. Hola-Jamriska L, Tort JF, Dalton JP, Day SR, Fan J et al (1998) Cathepsin C from Schistosoma japonicum–cDNA encoding the preproenzyme and its phylogenetic relationships. Eur J Biochem 255(3):527–534

  18. Horn M, Nussbaumerova M, Sanda M, Kovarova Z, Srba J et al (2009) Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem Biol 16(10):1053–1063

  19. Hu F, Yu X, Ma C, Zhou H, Zhou Z et al (2007) Clonorchis sinensis: expression, characterization, immunolocalization and serological reactivity of one excretory/secretory antigen-LPAP homologue. Exp Parasitol 117(2):157–164

  20. Ishidoh K, Muno D, Sato N, Kominami E (1991) Molecular cloning of cDNA for rat cathepsin C. Cathepsin C, a cysteine proteinase with an extremely long propeptide. J Biol Chem 266(25):16312–16317

  21. Jefferies JR, Campbell AM, van Rossum AJ, Barrett J, Brophy PM (2001) Proteomic analysis of Fasciola hepatica excretory-secretory products. Proteomics 1(9):1128–1132

  22. Ju JW, Joo HN, Lee MR, Cho SH, Cheun HI et al (2009) Identification of a serodiagnostic antigen, legumain, by immunoproteomic analysis of excretory-secretory products of Clonorchis sinensis adult worms. Proteomics 9(11):3066–3078

  23. Kang JM, Bahk YY, Cho PY, Hong SJ, Kim TS et al (2010) A family of cathepsin F cysteine proteases of Clonorchis sinensis is the major secreted proteins that are expressed in the intestine of the parasite. Mol Biochem Parasitol 170(1):7–16

  24. Kim TI, Na BK, Hong SJ (2009a) Functional genes and proteins of Clonorchis sinensis. Korean J Parasitol 47(Suppl):S59–S68

  25. Kim YJ, Choi MH, Hong ST, Bae YM (2009b) Resistance of cholangiocarcinoma cells to parthenolide-induced apoptosis by the excretory-secretory products of Clonorchis sinensis. Parasitol Res 104(5):1011–1016

  26. Kissoon-Singh V, Mortimer L, Chadee K (2011) Entamoeba histolytica cathepsin-like enzymes : interactions with the host gut. Adv Exp Med Biol 712:62–83

  27. Klinkert MQ, Felleisen R, Link G, Ruppel A, Beck E (1989) Primary structures of Sm31/32 diagnostic proteins of Schistosoma mansoni and their identification as proteases. Mol Biochem Parasitol 33(2):113–122

  28. Korkmaz B, Lesner A, Letast S, Mahdi YK, Jourdan ML et al (2013) Neutrophil proteinase 3 and dipeptidyl peptidase I (cathepsin C) as pharmacological targets in granulomatosis with polyangiitis (Wegener granulomatosis). Semin Immunopathol 35(4):411–421

  29. Lecaille F, Authie E, Moreau T, Serveau C, Gauthier F, Lalmanach G (2001) Subsite specificity of trypanosomal cathepsin L-like cysteine proteases. Probing the S2 pocket with phenylalanine-derived amino acids. Eur J Biochem 268(9):2733–2741

  30. Li Y, Hu X, Liu X, Huang Y, Xu J et al (2012a) Serological diagnosis of clonorchiasis: using a recombinant propeptide of cathepsin L proteinase from Clonorchis sinensis as a candidate antigen. Parasitol Res 110(6):2197–2203

  31. Li Y, Huang Y, Hu X, Liu X, Ma C et al (2012b) 41.5-kDa Cathepsin L protease from Clonorchis sinensis: expression, characterization, and serological reactivity of one excretory-secretory antigen. Parasitol Res 111(2):673–680

  32. Liang P, Sun J, Huang Y, Zhang F, Zhou J et al (2013a) Biochemical characterization and functional analysis of fructose-1,6-bisphosphatase from Clonorchis sinensis. Mol Biol Rep 40(7):4371–4382

  33. Liang P, Zhang F, Chen W, Hu X, Huang Y et al (2013b) Identification and biochemical characterization of adenylate kinase 1 from Clonorchis sinensis. Parasitol Res 112(4):1719–1727. doi:10.1007/s00436-013-3330-6

  34. Lightowlers MW, Rickard MD (1988) Excretory-secretory products of helminth parasites: effects on host immune responses. Parasitology 96(Suppl):S123–S166

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408

  36. Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ et al (2005) Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 5(1):31–41

  37. Lv X, Chen W, Wang X, Li X, Sun J et al (2012) Molecular characterization and expression of a cysteine protease from Clonorchis sinensis and its application for serodiagnosis of clonorchiasis. Parasitol Res 110(6):2211–2219

  38. Lv X, Huang L, Chen W, Wang X, Huang Y et al (2014) Molecular characterization and serological reactivity of a vacuolar ATP synthase subunit epsilon-like protein from Clonorchis sinensis. Parasitol Res 113(4):1545–1554

  39. McGuire MJ, Lipsky PE, Thiele DL (1997) Cloning and characterization of the cDNA encoding mouse dipeptidyl peptidase I (cathepsin C). Biochim Biophys Acta 1351(3):267–273

  40. Na BK, Kang JM, Sohn WM (2008) CsCF-6, a novel cathepsin F-like cysteine protease for nutrient uptake of Clonorchis sinensis. Int J Parasitol 38(5):493–502

  41. Nuckolls GH, Slavkin HC (1999) Paths of glorious proteases. Nat Genet 23(4):378–380

  42. Olsen JG, Kadziola A, Lauritzen C, Pedersen J, Larsen S, Dahl SW (2001) Tetrameric dipeptidyl peptidase I directs substrate specificity by use of the residual pro-part domain. FEBS Lett 506(3):201–206

  43. Paris A, Strukelj B, Pungercar J, Renko M, Dolenc I, Turk V (1995) Molecular cloning and sequence analysis of human preprocathepsin C. FEBS Lett 369(2–3):326–330

  44. Pereira PJ, Bergner A, Macedo-Ribeiro S, Huber R, Matschiner G et al (1998) Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Nature 392(6673):306–311

  45. Pham CT, Ley TJ (1999) Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci U S A 96(15):8627–8632

  46. Podack ER (1999) How to induce involuntary suicide: the need for dipeptidyl peptidase I. Proc Natl Acad Sci U S A 96(15):8312–8314

  47. Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290(Pt 1):205–218

  48. Sako Y, Nakaya K, Ito A (2011) Echinococcus multilocularis: identification and functional characterization of cathepsin B-like peptidases from metacestode. Exp Parasitol 127(3):693–701

  49. Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V et al (2010) Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci 101(3):579–585

  50. Smith AM, Dalton JP, Clough KA, Kilbane CL, Harrop SA et al (1994) Adult Schistosoma mansoni express cathepsin L proteinase activity. Mol Biochem Parasitol 67(1):11–19

  51. Timms AR, Bueding E (1959) Studies of a proteolytic enzyme from Schistosoma mansoni. Br J Pharmacol Chemother 14(1):68–73

  52. Toomes C, James J, Wood AJ, Wu CL, McCormick D et al (1999) Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet 23(4):421–424

  53. Tort J, Brindley PJ, Knox D, Wolfe KH, Dalton JP (1999) Proteinases and associated genes of parasitic helminths. Adv Parasitol 43:161–266

  54. Turk D, Janjic V, Stern I, Podobnik M, Lamba D et al (2001) Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J 20(23):6570–6582

  55. Wang F, Krai P, Deu E, Bibb B, Lauritzen C et al (2011a) Biochemical characterization of Plasmodium falciparum dipeptidyl aminopeptidase 1. Mol Biochem Parasitol 175(1):10–20

  56. Wang X, Chen W, Hu F, Deng C, Zhou C et al (2011b) Clonorchis sinensis enolase: identification and biochemical characterization of a glycolytic enzyme from excretory/secretory products. Mol Biochem Parasitol 177(2):135–142

  57. Wang X, Hu F, Hu X, Chen W, Huang Y, Yu X (2014) Proteomic identification of potential Clonorchis sinensis excretory/secretory products capable of binding and activating human hepatic stellate cells. Parasitol Res. doi:10.1007/s00436-014-3972-z

  58. Wang XY, Chen WJ, Huang Y, Sun JF, Men JT et al (2011c) The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol 12(10):R107

  59. Wolters PJ, Pham CT, Muilenburg DJ, Ley TJ, Caughey GH (2001) Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem 276(21):18551–18556

  60. Wong JY, Harrop SA, Day SR, Brindley PJ (1997) Schistosomes express two forms of cathepsin D. Biochim Biophys Acta 1338(2):156–160

  61. Xu Y, Chen W, Bian M, Wang X, Sun J et al (2013) Molecular characterization and immune modulation properties of Clonorchis sinensis-derived RNASET2. Parasit Vectors 6:360

  62. Yoo WG, Kim TI, Li S, Kwon OS, Cho PY et al (2009) Reference genes for quantitative analysis on Clonorchis sinensis gene expression by real-time PCR. Parasitol Res 104(2):321–328

  63. Yoon BI, Choi YK, Kim DY (2004) Differentiation processes of oval cells into hepatocytes: proposals based on morphological and phenotypical traits in carcinogen-treated hamster liver. J Comp Pathol 131(1):1–9

  64. Yoon BI, Jung SY, Hur K, Lee JH, Joo KH et al (2000) Differentiation of hamster liver oval cell following Clonorchis sinensis infection. J Vet Med Sci 62(12):1303–1310

  65. Zhang F, Liang P, Chen W, Wang X, Hu Y et al (2013) Stage-specific expression, immunolocalization of Clonorchis sinensis lysophospholipase and its potential role in hepatic fibrosis. Parasitol Res 112(2):737–749

  66. Zhou C, Bian M, Liao H, Mao Q, Li R et al (2013) Identification and immunological characterization of thioredoxin transmembrane-related protein from Clonorchis sinensis. Parasitol Res 112(4):1729–1736

  67. Zhou YZH, Chen Y, Zhang L, Wang K, Guo J et al (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460(7253):345–351

Download references


This work was supported by National Key Basic Research and Development Project of China (973 project; No. 2010CB530000), National Natural Science Foundation of China (No. 81101270 and No. 81171602), National S & T Major Program (No. 2012ZX10004-220), and Fundamental Research Funds for the Central Universities (No. 3164035 and No. 3161036).

Author information

Correspondence to Gang Lu or Xinbing Yu.

Additional information

Pei Liang and Lei He contributed equally to this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, P., He, L., Xu, Y. et al. Identification, immunolocalization, and characterization analyses of an exopeptidase of papain superfamily, (cathepsin C) from Clonorchis sinensis . Parasitol Res 113, 3621–3629 (2014). https://doi.org/10.1007/s00436-014-4027-1

Download citation


  • Clonorchis sinensis
  • Cathepsin C
  • Bioinformatics analysis
  • Transcriptional level and translational level
  • Immunolocalization