Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field

Abstract

Industrial plant-borne by-products can be sources of low-cost chemicals, potentially useful to build eco-friendly control strategies against mosquitoes. Neem cake is a cheap by-product of neem oil extraction obtained by pressing the seeds of Azadirachta indica. Neem products are widely used as insecticides since rarely induce resistance because their multiple mode of action against insect pests and low-toxicity rates have been detected against vertebrates. In this research, we used field bioassays to assess the effective oviposition repellence of neem cake fractions of increasing polarity [n-hexane (A), methanol (B), ethyl acetate (C), n-butanol (D), and aqueous (E) fraction] against Aedes albopictus, currently the most invasive mosquito worldwide. These fractions, already characterized for low nortriterpenoids contents by HPLC analyses, were analyzed for their total content by HPTLC, highlighting striking differences in their chemical composition. Field results showed that B, A, and C tested at 100 ppm exerted higher effective repellence over the control (71.33, 88.59, and 73.49 % of ER, respectively), while E and D did not significantly deter A. albopictus oviposition (17.06 and 22.72 % of ER, respectively). The highest oviposition activity index was achieved by A (−0.82), followed by C (−0.63), and B (−0.62). Lower OAIs were achieved by D (−0.14) and E (−0.09). On the basis of our results, we believe that A, B, and C are very promising as oviposition deterrents against the arbovirus vector A. albopictus since they are proved as rich in active metabolites, cheap, and really effective at low doses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abdel-Ghaffar F, Al-Quraishy S, Sobhy H, Semmler M (2008) Neem seed extract shampoo, Wash Away Louse®, an effective plant agent against Sarcoptes scabiei mite infesting dogs in Egypt. Parasitol Res 104:145–148

  2. Abdel-Ghaffar F, Semmler M, Al-Rasheid KAS, Mehlhorn H (2009) In vitro efficacy of ByeMite® and Mite-Stop® on developmental stages of the red chicken mite Dermanyssus gallinae. Parasitol Res 105:469–471

  3. Abdel-Ghaffar F, Al-Quraishy S, Al-Rasheid KAS, Mehlhorn H (2012) Efficacy of a single treatment of head lice with a neem seed extract: an in vivo and in vitro study on nits and motile stages. Parasitol Res 110:277–280

  4. Al-Quraishy S, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn J, Mehlhorn H (2011) Effects of a neem seed extract (MiteStop®) on mallophages (featherlings) of chicken: in-vivo and in-vitro studies. Parasitol Res 110:617–622

  5. Al-Quraishy S, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn J, Mehlhorn H (2012) Observations on effects of a neem seed extract (MiteStop®) on biting lice (mallophages) and bloodsucking insects parasitizing horses. Parasitol Res 110:335–339

  6. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

  7. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

  8. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the Tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Bor Zoon Dis 7:76–85

  9. Benelli G, Flamini G, Canale A, Cioni PL, Conti B (2012a) Toxicity evaluation of different essential oil formulations against the Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) (Diptera Tephritidae). Crop Protect 42:223–229

  10. Benelli G, Flamini G, Canale A, Molfetta I, Cioni PL, Conti B (2012b) Repellence of Hyptis suaveolens L. (Lamiaceae) whole essential oil and major constituents against adults of the granary weevil Sitophilus granarius (L.) (Coleoptera: Dryophthoridae). Bull Insectol 65:177–183

  11. Benelli G, Canale A, Flamini G, Cioni PL, Demi F, Ceccarini L, Macchia M, Conti B (2013a) Biotoxicity of Melaleuca alternifolia (Myrtaceae) essential oil against the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), and its parasitoid Psyttalia concolor (Hymenoptera: Braconidae). Ind Crop Prod 50:596–603

  12. Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013b) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161

  13. Benelli G, Canale A, Conti B (2013c) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacol On Line (in press)

  14. Bowatte G, Perera P, Senevirathne G, Meegaskumbura S, Meegaskumbura M (2013) Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biol Control. doi:10.1016/j.biocontrol.2013.10.005

  15. Caminade C, Medlock JM, Ducheyne E, McIntryre KM, Leach S, Baylis M, Morse A (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717

  16. Canale A, Benelli G, Conti B, Lenzi G, Flamini G, Francini A, Cioni PL (2013) Ingestion toxicity of three Lamiaceae essential oils incorporated in protein baits against the olive fruit fly, Bactrocera oleae (Rossi) (Diptera Tephritidae). Nat Prod Res 27:2091–2099

  17. Cheah SX, Tay JW, Chan LK, Jaal Z (2013) Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 112:3275–3282

  18. Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, Macchia M, Canale A (2012a) Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 110:2013–2021

  19. Conti B, Benelli G, Leonardi M, Afifi UF, Cervelli C, Profeti R, Pistelli L, Canale A (2012b) Repellent effect of Salvia dorisiana, S. longifolia and S. sclarea (Lamiaceae) essential oils against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 111:291–299

  20. Conti B, Leonardi M, Pistelli L, Profeti R, Ouerghemmi I, Benelli G (2013a) Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitol Res 112:991–999

  21. Conti B, Flamini G, Cioni PL, Ceccarini L, Macchia M, Benelli G (2013b) Mosquitocidal essential oils: are they safe against non-target aquatic organisms? Parasitol Res. doi:10.1007/s00436-013-3651-5

  22. Coria C, Almiron W, Valladares G, Carpinella C, Luduena F, Defago M, Palacios S (2008) Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Bioresour Technol 99:3066–3070

  23. Council NR (1992) Neem: a tree for solving global problems. Report of an adhoc panel of the Board on Science and Technology for International Development. National Academy, Washington

  24. Dua VK, Pandey AC, Raghavendra K, Gupta A, Sharma T, Dash A (2009) Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes. Malaria J 8:124

  25. Egho EO (2012) Seeds of neem tree (Azadirachta indica A. Juss). Promising biopesticide in the management of cowpea insect pests and grain yield in the early cropping season at Asaba and Abraka, Delta State, Nigeria. J Agric Sci 4:181–189

  26. Elango G, Bagavan A, Kamaraj C, Abduz Zahir A, Abdul Rahuman A (2009) Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitol Res 105:1567–1576

  27. Elango G, Rahuman AA, Kamaraj C, Bagavan A, Zahir AA (2011) Efficacy of medicinal plant extracts against malarial vector, Anopheles subpictus Grassi. Parasitol Res 108:1437–1445

  28. Gallo FR, Multari G, Federici E, Palazzino G, Giambenedetti M, Petitto V, Poli F, Nicoletti M (2011) Chemical fingerprinting of Equisetum arvense L. using HPTLC densitometry and HPLC. Nat Prod Res 25:1261–1270

  29. Gallo FR, Multari G, Federici E, Palazzino G, Nicoletti M, Petitto V (2012) The modern analytical determination of Botanicals and similar novel natural products by the HPTLC fingerprint approach. In: Atta-Ur-Rahman (ed) Studies in Natural Products Chemistry. Elsevier 37:217-258

  30. Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N, Tzakou O, Michaelakis A (2013) Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res 112:1113–1123

  31. Gleiser RM, Bonino MA, Zygadlo JA (2011) Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti. Parasitol Res 108:69–78

  32. Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:1607–1620

  33. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367

  34. Graham HD (1992) Stabilization of the Prussian blue color in the determination of polyphenols. J Agric Food Chem 40:801–805

  35. Hafeez F, Akram W, Shaalan EA (2011) Mosquito larvicidal activity of citrus limonoids against Aedes albopictus. Parasitol Res 109:221–229

  36. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

  37. Isman MB (2006) Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

  38. Kempraj V, Bhat SK (2011) Acute and reproductive toxicity of Annona squamosa to Aedes albopictus. Pestic Biochem Physiol 100:82–86

  39. Klun JA, Khrimian A, Debboun M (2006) Repellent and deterrent effects of SS220, Picaridin, and Deet suppress human blood feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi. J Med Entomol 43:34–39

  40. Koliopoulos G, Pitarokili D, Kioulos E, Michaelakis A, Tzakou O (2010) Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol Res 107:327–335

  41. Koren G, Matsui D, Bailey B (2003) DEET-based insect repellents: safety implications for children and pregnant and lactating women. Canad Med Assoc J 169:209–212

  42. Kramer WL, Mulla S (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8:1111–1117

  43. Locher N, Al-Rasheid KAS, Abdel-Ghaffar F, Mehlhorn H (2010) In vitro and field studies on the contact and fumigant toxicity of a neem-product (Mite-Stop®) against the developmental stages of the poultry red mite Dermanyssus gallinae. Parasitol Res 107:417–423

  44. Maheswaran R, Ignacimuthu S (2012) A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res 110:1801–1813

  45. Marini-Bettolo GB, Nicoletti M, Patamia M, Galeffi C, Messana I (1981) Plant screening by chemical and chromatographic procedure under field conditions. J Chromatogr 213:113–120

  46. Mehlhorn H, Walldorf V, Abdel-Ghaffar F, Al-Quraishy S, Al-Rasheid KAS, Mehlhorn J (2012) Biting and bloodsucking lice of dogs—treatment by means of a neem seed extract (MiteStop®, Wash Away Dog). Parasitol Res 110:769–773

  47. Nicoletti M, Serafini M, Aliboni A, D'Andrea A, Mariani S (2010) Toxic effects of neem cake extracts on Aedes albopictus larvae. Parasitol Res 107:89–94

  48. Nicoletti M, Mariani S, Maccioni O, Coccioletti T, Murugan K (2012) Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito. Parasitol Res 111:205–2013

  49. Panneerselvam C, Murugan K (2013) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:679–692

  50. Panneerselvam C, Murugan K, Kovendan K, Kumar PM (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111:2241–2251

  51. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to light. Microb Infect 11:1177–1185

  52. Pushpanathan T, Jebanesan A, Govindarajan M (2006) Larvicidal, ovicidal and repellent activities of Cymbopogan citrates Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). Tropical Biomed 23:208–212

  53. Rajkumar S, Jebanesan A (2005) Repellency of volatile oils from Moschosma polystachyum and Solanum xanthocarpum against filarial vector Culex quinquefasciatus Say. Tropical Biomed 22:139–142

  54. Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104:337–340

  55. Ram M, Abdin MZ, Khan MA, Prabhakar J (2011) HPTLC fingerprint analysis: a quality control for authentication of herbal phytochemicals in high-performance thin-layer chromatography (HPTLC). Springer, Berlin

  56. Rao DR, Reuben R, Venugopal MS, Nagasampagi BA, Schmutterer H (1992) Evaluation of neem, Azadirachta indica, with and without water management, for the control of culicine mosquito larvae in rice-fields. Med Vet Entomol 6:318–324

  57. Reich E, Schibli A (2007) A high-performance thin-layer chromatography for analysis of medicinal plants. Thieme Medical, New York

  58. Schmahl G, Al-Rasheid KAS, Abdel-Ghaffar F, Klimpel S, Mehlhorn H (2010) The efficacy of neem seed extracts (Tresan®, MiteStop®) on a broad spectrum of pests and parasites. Parasitol Res 107:261–269

  59. Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2010) Nature helps: from research to products against blood sucking parasites. Parasitol Res 105:1483–1487

  60. Sharma VP, Dhiman RC (1993) Neem oil as a sand fly (Diptera: Psychodidae) repellent. J Am Mosq Control Assoc 9:364–366

  61. Su T, Mulla MS (1998a) Antifeedancy of neem products containing Azadirachtin against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J Vector Ecol 23:114–122

  62. Su T, Mulla MS (1998b) Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera; Culicidae). J Am Mosq Control Assoc 14:204–209

  63. Walldorf V, Mehlhorn H, Al-Quraishy S, Al-Rasheid KAS, Abdel-Ghaffar F, Mehlhorn J (2012) Treatment with a neem seed extract (MiteStop®) of beetle larvae parasitizing the plumage of poultry. Parasitol Res 110:623–627

  64. Warikoo R, Wahab N, Kumar S (2011) Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector, Aedes aegypti L. Parasitol Res 109:1125–1131

  65. Xue RD, Barnard DR, Ali A (2001) Laboratory and field evaluation of insect repellents as oviposition deterrents against the mosquito Aedes albopictus. Med Vet Entomol 15:126–131

  66. Yamany AS, Mehlhorn H, Adham FK (2012) Yolk protein uptake in the oocyte of the Asian tiger mosquito Aedes albopictus (Skuse) (Diptera: Culicidae). Parasitol Res 111:1315–1324

Download references

Acknowledgments

We would like to thank Angelo Canale and Susanna Mariani for the helpful discussion on bioactivity and chemical characterization of plant-borne natural products, Helen Romito for proofreading the English, and Francesca Cosci for her kind assistance during field experiments.

Author information

Correspondence to Giovanni Benelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1398 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benelli, G., Conti, B., Garreffa, R. et al. Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field. Parasitol Res 113, 933–940 (2014). https://doi.org/10.1007/s00436-013-3725-4

Download citation

Keywords

  • Azadirachtin
  • Ethyl Acetate Fraction
  • Rift Valley Fever
  • High Performance Thin Layer Chromatography
  • Oviposition Deterrent