Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

High resolution melting technique for molecular epidemiological studies of cystic echinococcosis: differentiating G1, G3, and G6 genotypes of Echinococcus granulosus sensu lato


Reliable and rapid genotyping of large number of Echinococcus granulosus sensu lato isolates is crucial for understanding the epidemiology and transmission of cystic echinococcosis. We have developed a method for distinguishing and discriminating common genotypes of E. granulosus s.l. (G1, G3, and G6) in Iran. This method is based on polymerase chain reaction coupled with high resolution melting curve (HRM), ramping from 70 to 86 °C with fluorescence data acquisition set at 0.1 °C increments and continuous fluorescence monitoring. Consistency of this technique was assessed by inter- and intra-assays. Assessment of intra- and inter-assay variability showed low and acceptable coefficient of variations ranging from 0.09 to 0.17 %. Two hundred and eighty E. granulosus s.l. isolates from sheep, cattle, and camel were used to evaluate the applicability and accuracy of the method. The isolates were categorized as G1 (93, 94, and 25 %), G3 (7, 4, and 4 %), and G6 (0, 2, and 71 %) for sheep, cattle, and camel, respectively. HRM results were completely compatible with those obtained from sequencing and rostellar hook measurement. This method proved to be a valuable screening tool for large-scale molecular epidemiological studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Addy F, Alakonya A, Wamae N et al (2012) Prevalence and diversity of cystic echinococcosis in livestock in Maasailand, Kenya. Parasitol Res 111(6):2289–2294

  2. Andriantsoanirina V, Lascombes V, Ratsimbasoa A et al (2009) Rapid detection of point mutations in Plasmodium falciparum genes associated with antimalarial drugs resistance by using high-resolution melting analysis. J Microbiol Methods 78(2):165–170

  3. Bagheri R, Haghi SZ, Amini M et al (2011) Pulmonary hydatid cyst: analysis of 1,024 cases. Gen Thorac Cardiovasc Surg 59(2):105–109

  4. Bastien R, Lewis TB, Hawkes JE et al (2008) High throughput amplicon scanning of the TP53 gene in breast cancer using high resolution fluorescent melting curve analyses and automatic mutation calling. Hum Mutat 29(5):757–764

  5. Bowles J, Blair D, McManus DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54(2):165–173

  6. Bowles J, McManus DP (1993) NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. Int J Parasitol 23(7):969–972

  7. Breyer I, Georgieva D, Kurdova R et al (2004) Echinococcus granulosus strain typing in Bulgaria: the G1 genotype is predominant in intermediate and definitive wild hosts. Parasitol Res 93(2):127–130

  8. Budke CM, Deplazes P, Torgerson PR (2006) Global socioeconomic impact of cystic echinococcosis. Emerg Infect Diseases 12(2):296

  9. Cardona GA, Carmena DA (2013) Review of the global prevalence, molecular epidemiology and economics of cystic echinococcosis in production animals. Vet Parasitol 192(1–3):10–32

  10. Costa JM, Cabaret O, Moukoury S et al (2011) Genotyping of the protozoan pathogen Toxoplasma gondii using high-resolution melting analysis of the repeated B1 gene. J Microbiol Meth 86(3):357–363

  11. Gasser RB (2006) Molecular tool advances, opportunities and prospects. Vet Parasitol 136(2):69–89

  12. Hajialilo E, Harandi MF, Sharbatkhori M et al (2012) Genetic characterization of Echinococcus granulosus in camels, cattle and sheep from the south-east of Iran indicates the presence of the G3 genotype. J Helminthol 86(3):263

  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

  14. Harandi MF, Budke CM, Rostami S (2012) The monetary burden of cystic echinococcosis in Iran. PLoS Negl Trop Dis 6(11):e1915

  15. Harandi MF, Hobbs RP, Adams PJ et al (2002) Molecular and morphological characterization of Echinococcus granulosus of human and animal origin in Iran. Parasitology 125(Pt 4):367–373

  16. Kia EB, Rahimi H, Sharbatkhori M et al (2010) Genotype identification of human cystic echinococcosis in Isfahan, central Iran. Parasitol Res 107(3):757–760

  17. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

  18. Krypuy M, Ahmed A, Etemadmoghadam D et al (2007) High resolution melting for mutation scanning of TP53 exons 5–8. BMC Cancer 7(1):168

  19. Kumar S, Nei M, Dudley J et al (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

  20. Lymbery AJ, Thompson RCA (2012) The molecular epidemiology of parasite infections: tools and applications. Mol Biochem Parasitol 181(2):102–116

  21. Ma J, Wang H, Lin G et al (2012) Molecular identification of Echinococcus species from eastern and southern Qinghai, China, based on the mitochondrial cox1 gene. Parasitol Res 111(1):179–184

  22. Maurelli MP, Rinaldi L, Capuano F et al (2009) Development of a real-time PCR for the differentiation of the G1 and G2/G3 genotypes of Echinococcus granulosus. Parasitol Res 105(1):255–259

  23. Millat G, Chanavat V, Rodriguez-Lafrasse C et al (2009) Rapid, sensitive and inexpensive detection of SCN5A genetic variations by high resolution melting analysis. Clin Biochem 42(6):491–499

  24. Maillard S, Benchikh-Elfegoun MC, Knapp J et al (2007) Taxonomic position and geographical distribution of the common sheep G1 and camel G6 strains of Echinococcus granulosus in three African countries. Parasitol Res 100(3):495–503

  25. Murray CJL, Vos T, Lozano R et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global burden of disease study 2010. Lancet 380(9859):2197–2223

  26. Nakao M, Yanagida T, Okamoto M et al (2010) State-of-the-art Echinococcus and Taenia phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis. Infect Genet Evol 10(4):444–452

  27. Nasereddin A, Jaffe CL (2010) Rapid diagnosis of Old World Leishmaniasis by high-resolution melting analysis of the 7SL RNA gene. J Clin Microbiol 48(6):2240–2242

  28. Ngui R, Lim YAL, Chua KH (2012) Rapid detection and identification of human hookworm infections through high resolution melting (HRM) analysis. PLoS One 7(7):e41996

  29. Pangasa A, Jex AR, Campbell BE et al (2009) High resolution melting-curve (HRM) analysis for the diagnosis of cryptosporidiosis in humans. Mol Cell Probes 23(1):10–15

  30. Sharbatkhori M, Fasihi Harandi M, Mirhendi H et al (2011) Sequence analysis of cox1 and nad1 genes in Echinococcus granulosus G3 genotype in camels (Camelus dromedarius) from central Iran. Parasitol Res 1–7

  31. Sharbatkhori M, Mirhendi H, Jex AR et al (2009) Genetic categorization of Echinococcus granulosus from humans and herbivorous hosts in Iran using an integrated mutation scanningphylogenetic approach. Electrophoresis 30(15):2648–2655

  32. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

  33. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

  34. Thompson RCA (2008) The taxonomy, phylogeny and transmission of Echinococcus. Exp Parasitol 119(4):439–446

  35. Thompson RCA, McManus DP (2002) Towards a taxonomic revision of the genus Echinococcus. Trends Parasitol 18(10):452–457

  36. Zhang P, Liu Y, Alsarakibi M et al (2011) Application of HRM assays with EvaGreen dye for genotyping Giardia duodenalis zoonotic assemblages. Parasitol Res 1–7

Download references


The authors wish to thank all veterinary staff of different abattoirs that help collecting parasite specimen for this study. This work is carried out as a part of a Ph.D. thesis done by Sima Rostami and was financially supported by the vice-chancellor for Research, Kerman University of Medical Sciences, grant no. 90-107.

Author information

Correspondence to Majid Fasihi Harandi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rostami, S., Talebi, S., Babaei, Z. et al. High resolution melting technique for molecular epidemiological studies of cystic echinococcosis: differentiating G1, G3, and G6 genotypes of Echinococcus granulosus sensu lato. Parasitol Res 112, 3441–3447 (2013).

Download citation


  • Sensu Stricto
  • High Resolution Melting
  • Cystic Echinococcosis
  • Echinococcus Granulosus
  • High Resolution Melting Analysis