Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia

  • 451 Accesses

  • 10 Citations


Most species of the genus Taenia are of considerable medical and veterinary significance. In this study, complete nuclear 18S rRNA gene sequences were obtained from seven members of genus Taenia [Taenia multiceps, Taenia saginata, Taenia asiatica, Taenia solium, Taenia pisiformis, Taenia hydatigena, and Taenia taeniaeformis] and a phylogeny inferred using these sequences. Most of the variable sites fall within the variable regions, V1–V5. We show that sequences from the nuclear 18S ribosomal RNA gene have considerable promise as sources of phylogenetic information within the genus Taenia. Furthermore, given that almost all the variable sites lie within defined variable portions of that gene, it will be appropriate and economical to sequence only those regions for additional species of Taenia.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Abuladze KI (1964) Essentials of cestodology. In: Skrjabin KI (ed) Taeniata of animals and man and diseases caused by them, vol IV. Nauka, Moskow, English translation (1970), Israel Program of Scientific Translations, Jerusalem

  2. Blair D (2006) Ribosomal DNA variation in parasitic flatworms. In: Maule A (ed) Parasitic flatworms: molecular biology, biochemistry, immunology and control. CABI, London, pp 96–123

  3. Bowles J, McManus DP (1994) Genetic characterization of Asian Taenia, a newly described taeniid cestode of humans. AmJTrop Med Hyg 50:33–44

  4. Campos A, Cummings MP, Reyes JL, Laclette JP (1998) Phylogenetic relationships of platyhelminthes based on 18S ribosomal gene sequences. Mol Phylogenet Evol 10:1–10

  5. Carabin H, Budke C, Cowan L, Willingham A, Torgerson P (2005) Methods for assessing the burden of parasitic zoonoses: echinococcosis and cysticercosis. Trends Parasitol 21:327–333

  6. de Queiroz A, Alkire NL (1998) The phylogenetic placement of Taenia cestodes that parasitize humans. J Parasitol 84:379–383

  7. Foronda P, Casanova JC, Valladares B, Martinez E, Feliu C (2004) Molecular systematics of several cyclophyllid families (Cestoda) based on the analysis of 18S ribosomal DNA gene sequences. Parasitol Res 93(4):279–282

  8. Hoberg EP (2002) Taenia tapeworms: their biology, evolution and socioeconomic significance. Microbes Infect 4:859–866

  9. Hoberg EP (2006) Phylogeny of Taenia: species definitions and origins of human parasites. Parasitol Int 55:S23–S30

  10. Hoberg EP, Jones A, Rausch RL, Eom KS, Gardner SL (2000) A phylogenetic hypothesis for species of the genus Taenia (Eucestoda: Taeniidae). J Parasitol 86:89–98

  11. Huang B, Sheng J (2006) Chinese atlas of parasites for livestock and poultry in China. China Agricultural Science and Technology Press, Beijing, pp 199–205, In Chinese

  12. Jia WZ, Yan HB, Guo AJ, Zhu XQ, Wang YC, Shi WG, Chen HT, Zhan F, Zhang SH, Fu BQ, Littlewood DTJ, Cai XP (2010) Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics 11:447

  13. Knapp J, Nakao M, Yanagida T, Okamoto M, Saarma U, Lavikainen A, Ito A (2011) Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): an inference from nuclear protein-coding genes. Mol Phylogenet Evol 61:628–638

  14. Lavikainen A, Haukisalmi V, Lehtinen MJ, Henttonen H, Oksanen A, Meri S (2008) A phylogeny of members of the family Taeniidae based on the mitochondrial cox1 and nad1 gene data. Parasitology 135:1457–1467

  15. Liu GH, Lin RQ, Li WM, Liu W, Liu Y, Yuan ZG, Song HQ, Zhao GH, Zhang KX, Zhu XQ (2011) The complete mitochondrial genomes of three cestode species of Taenia infecting animals and humans. Mol Biol Rep 38:2249–2256

  16. Loos-Frank B (2000) An up-date of Verster’s (1969) ‘Taxonomic revision of the genus Taenia Linnaeus’ (Cestoda) in table format. Sys Parasitol 45:155–183

  17. Murell KD (2005) Epidemiology of taeniosis and cysticercosis. In: Murell KD (ed) WHO/FAO/OIE guidelines for the surveillance, prevention and control of taeniosis/cysticercosis. OIE, Paris, pp 27–44

  18. Okamoto M, Bessho Y, Kamiya M, Kurosawa T, Horii T (1995) Phylogenetic relationships within Taenia taeniaeformis variants and other taeniid cestodes inferred from the nucleotide sequence of the cytochrome coxidase subunit I gene. Parasitol Res 81:415–458

  19. Olson PD, Tkach VV (2005) Advances and trends in the molecular systematics of the parasitic platyhelminthes. Adv Parasitol 60:165–243

  20. Olson PD, Littlewood DT, Bray RA, Mariaux J (2001) Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Mol Phylogenet Evol 19(3):443–467

  21. Olson PD, Yoder K, Fajardo L-GLF, Marty AM, van de Pas S, Olivier C, Relman DA (2003) Lethal invasive cestodiasis in immunosuppressed patients. J Infect Dis 187:1962–1966

  22. Purdom PW, Bradford PG, Tamura K, Kumar S (2000) Single column discrepancy and dynamic max-mini optimizations for quickly finding the most parsimonious evolutionary trees. Bioinformatics 16:140–151

  23. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition–transversion and G+C-content biases. Mol Biol Evol 9:678–687

  24. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

  26. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

  27. Verster A (1969) A taxonomic revision of the genus Taenia Linnaeus, 1758 s. str. Onderstepoort J Vet 36:3–58

  28. von Nickisch-Rosenegk M, Silva-Gonzalez R, Lucius R (1999) Modification of universal 12S primers for specific amplification of contaminated Taenia spp. (Cestoda) gDNA enabling phylogenetic studies. Parasitol Res 85:819–825

  29. Waeschenbach A, Webster BL, Bray RA, Littlewood DTJ (2007) Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Mol Phylogenet Evol 45:311–325

  30. Wuyts J, van de Peer Y, Wachter RD (2001) Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Res 29:5017–5028

  31. Zhang L, Hu M, Jones A, Allsopp BA, Beveridge I, Schindler AR, Gasser RB (2007) Characterization of Taenia madoquae and Taenia regis from carnivores in Kenya using genetic markers in nuclear and mitochondrial DNA, and their relationships with other selected taeniids. Mol Cell Probe 21:379–385

Download references


This study was supported by the Special Fund for Agro-scientific Research in the Public Interest (200903036-07), the People′s Republic of China. The authors also thank Professor David Blair for his comments and modifications.

Author information

Correspondence to Wanzhong Jia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yan, H., Lou, Z., Li, L. et al. The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia . Parasitol Res 112, 1343–1347 (2013).

Download citation


  • Neighbor Join
  • Echinococcus
  • Echinococcus Granulosus
  • Morphological Tree
  • Taenia Solium