Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole)


In spite of being a major vector for several domestic, medical, and veterinary pests, the control aspect of the common housefly, Musca domestica L. (Diptera: Muscidae) is often neglected. In the present study, the essential oil of Cymbopogon citratus and its major components were evaluated for control of housefly. The chemical composition analysis of C. citratus oil by gas chromatographic mass spectrometry (GC–MS) revealed citral (47 %) and 1,8-cineole (7.5 %) as principal components. The analysis of oil vapor by solid phase microextraction (SPME/GC–MS) showed increase in citral (74.9 %) and 1,8-cineole (8.6 %) content. Assay of oil against housefly larvae and pupae through contact toxicity assay showed lethal concentration (LC)50 value of 0.41 μl/cm2 and of percentage inhibition rate (PIR) of 77.3 %, respectively. Fumigation assay was comparatively more effective with LC50 of 48.6 μl/L against housefly larvae, and a PIR value of 100 % against housefly pupae. The monoterpenes, citral, and 1,8-cineole, when assessed for their insecticidal activity against housefly larvae, showed LC50 of 0.002 and 0.01 μl/cm2 (contact toxicity assay) and LC50 of 3.3 and 2.4 μl/L (fumigation assay). For pupicidal assay, both citral and 1,8-cineole had a PIR value of 100 %. High efficacy of citral and 1,8-cineole against housefly, established them to be an active insecticidal agent of C. citratus oil. The study demonstrates potentiality of C. citratus oil as an excellent insecticide for housefly control, and the results open up the opportunity of oil/monoterpenes being developed into an eco-friendly, economical, and acceptable product.

This is a preview of subscription content, log in to check access.


  1. Amer A, Mehlhorn H (2006a) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490

  2. Amer A, Mehlhorn H (2006b) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

  3. Boulesteix G, Le Dantec P, Chevalier B, Dieng M, Niang B, Diatta B (2005) Role of Musca domestica in the transmission of multiresistant bacteria in the centres of intensive care setting in sub-Saharan Africa. Ann Fr Anesth Reanim 24:361–365

  4. Cavalcanti ESB, DeMorais SM, Ashley ALM, William PSE (2004) Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz 99:541–544

  5. Chantraine JM, Laurent D, Ballivian C, Saavedra G, Ibañez R, Vilaseca LA (1998) Insecticidal activity of essential oils on Aedes aegypti larvae. Phytother Res 12:350–354

  6. Cohen D, Green M, Block C, Slepon R, Ambar R, Wasserman SS, Levine MM (1999) Reduction of transmission of shigellosis by control of houseflies (Musca domestica). Lancet 337:993–997

  7. Curtis CR, Lines JD, Baolin L, Renz A (1990) Natural and synthetic repellents. In: Curtis CF (ed) Appropriate technology in vector control. CRC, Boca Raton, pp 75–92

  8. Da Silva CDB, Guterres SS, Weisheimer V, Schapoval EES (2008) Antifungal activity of the lemongrass oil and citral against Candida spp. Braz J Infect Dis 12:63–66

  9. Finney DJ (1971) Probit Analysis, 3rd edn. Cambridge University Press, London

  10. Fotedar R (2001) Vector potential of houseflies (Musca domestica) in the transmission of Vibrio cholerae in India. Acta Trop 78:31–34

  11. Grosscurt AC, Tipker J (1980) Ovicidal and larvicidal structure–activity relationship of Benzoylureas on the housefly (Musca domestica). Pestic Biochem Physiol 13:249–254

  12. Ishii T, Matsuzawa H, Vairappan CS (2010) Repellent activity of common spices against the rice weevil, Sitophilus zeamais Motsch (Coleoptera: Curculionidae). J Trop Biol Conserv 7:75–80

  13. Juan LW, Zerba EN, Mariategui P, Peicys C, Tarelli G, Demyda S, Masuh HM (2010) New spot-on formulation containing chlorpyrifos for controlling horn flies on cattle: laboratory model of insecticide release and field trial. Parasitol Res 107:967–974

  14. Kasali AA, Oyedeji AO, Ashilokun AO (2001) Volatile leaf oil constituents of Cymbopogon citratus (DC) Stapf. Flavor Fragr J 6:377–378

  15. Katsukawa M, Nakata R, Takizawa Y, Hori K, Takahashi S, Inoue H (2010) Citral, a component of lemongrass oil, activates PPARalpha and gamma and suppresses COX-2 expression. Biochim Biophys Acta 1801(11):1214–1220

  16. Kumar P, Mishra S, Malik A, Satya S (2011a) Repellent, larvicidal and pupicidal properties of essential oils and their formulations against the housefly, Musca domestica. Med Vet Entomol 25:302–310

  17. Kumar P, Mishra S, Malik A, Satya S (2011b) Insecticidal properties of Mentha species: a review. Ind Crops Prod 34:802–817

  18. Kumar P, Mishra S, Malik A, Satya S (2012a) Insecticidal evaluation of essential oils of Citrus sinensis L. (Myrtales: Myrtaceae) against housefly., Musca domestica L. (Diptera: Muscidae). Parasitol Res 110:1929–1936

  19. Kumar P, Mishra S, Malik A, Satya S (2012b) Compositional analysis and insecticidal activity of Eucalyptus globulus (family: Myrtaceae) essential oil against housefly (Musca domestica). Acta Trop 122:212–218

  20. Kumar P, Mishra S, Malik A, Satya S (2012c) Efficacy of Mentha × piperita and Mentha citrata essential oils against housefly, Musca domestica L. Ind Crops Prod 39:106–112

  21. Leal WS, Uchida KJ (1998) Application of GC-EAD to the determination of mosquito repellents derived from a plant, Cymbopogon citratus. Asia-Pac Entomol 1:217–221

  22. Lee S, Peterson CJ, Coats JR (2003) Fumigation toxicity of monoterpenoids to several stored product insects. J Stored Prod Res 39:77–85

  23. Negrelle RRB, Gomes EC (2007) Cymbopogon citratus (DC.) Stapf: chemical composition and biological activities. Rev Bras Pl Med Botucatu 9:80–92

  24. Oliveira VCS, Moura DMS, Lopes JAD, De Andrade PP, Da Silva NH, Figueiredo RCBQ (2009) Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoides Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes. Parasitol Res 104:1053–1059

  25. Osmani Z, Sighamony S (1980) Effects of certain essential oils on mortality and methamorphosis of Aedes aegypti. Pestic 14:15–16

  26. Parangama PA, Abeysekere KHT, Abeywickrama KP, Nugahyadde L (2003) Fungicidal and antiflatoxigenic effects of the essential oil of Cymbopogon citratus (DC) Stapf (lemon grass) against Aspergillus flavus link. Isolated from stored rice. Lett Appl Microbiol 36:1–5

  27. Park IK, Kim JN, Lee YS, Lee SG, Ahn YJ, Shin SC (2008) Toxicity of plant essential oils and their components against Lycoriella ingenua (Diptera, Sciaridae). J Econ Entomol 101:139–144

  28. Pushpanathan T, Jebanesan A, Govindarajan M (2006) Larvicidal, ovicidal and repellent activities of Cymbopogon citratus Stapf. (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 23:208–212

  29. Reitz SR, Funderburk JE, Waring SM (2006) Differential predation by the generalist predator Orius insidiosus on congeneric species of thrips that vary in size and behaviour. Entomol Exp Appl 119:179–188

  30. Rice PJ, Coats JR (1994) Insecticidal properties of several monoterpenoid to the house fly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebrionidae), and Southern Corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 87:1172–1179

  31. Santin MR, Dos Santos AO, Nakamura CV, Filho BPD, Ferreira ICP, Ueda-Nakamura T (2009) In vitro activity of the essential oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis. Parasitol Res 105:1489–1496

  32. Semmler M, Abdel-Ghaffar F, Al-Rasheid K, Mehlhorn H (2011) Comparison of the tick repellent efficacy of chemical and biological products originating from Europe and the USA. Parasitol Res 108:899–904

  33. Senthilkumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the Malarial Vector, Anopheles stephensi (Liston). Parasitol Res 104:237–244

  34. SPSS (2008) Statistical product and service solution. System user's guide, version 17.5

  35. Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237

  36. Tyagi AK, Malik A (2012) Bactericidal action of lemon grass oil vapors and negative air ions. Innov Food Sci Emerg Technol 13:169–177

  37. Yang P, Ma Y, Zheng S (2005) Adulticidal activity of five essential oils against Culex pipiens quinquefasciatus. J Pestic Sci 30:84–89

  38. Zheng G, Kenney PM, Lam LKT (1993) Potential Anticarcinogenic natural products isolated from lemongrass oil and galanga root oil. J Agric Food Chem 41:153–156

Download references


The authors acknowledge the technical support provided by Mr. Ajai Kumar (AIRF JNU, India) for GC–MS and SPME analysis and Mr. Sabal Singh (IIT Delhi, India) for his help in experimental work.

Author information

Correspondence to Anushree Malik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, P., Mishra, S., Malik, A. et al. Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole). Parasitol Res 112, 69–76 (2013). https://doi.org/10.1007/s00436-012-3105-5

Download citation


  • Insecticidal Activity
  • Larval Mortality
  • Musca Domestica
  • Larval Diet
  • Contact Toxicity