Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cryptosporidiosis: comparison of three diagnostic methods and effects of storage temperature on detectability of cryptosporidia in cattle faeces

  • 307 Accesses

  • 6 Citations

Abstract

Three diagnostic methods (a modified Ziehl–Neelsen staining technique (MZN), a negative staining with carbol fuchsine (CF) and a commercial enzyme immunoassay (EIA) kit, ProSpecT® Cryptosporidium Microplate Assay (Remel, Lenexa, KS, USA)) for detection of Cryptosporidium oocysts in cattle faeces were compared regarding sensitivity and suitability under routine laboratory conditions, with particular emphasis on sample storage. In the 103 faecal samples examined, cryptosporidia infections were detected significantly more often by EIA (p < 0.05; n = 76) than by MZN (n = 65) if ten random fields were evaluated microscopically, but not if the whole coverslip was scanned. In contrast, sensitivities of EIA and CF (n = 69) did not differ significantly. Results were obtained very rapidly by CF. However, the hands-on time of CF is comparable to EIA, while MZN is more time consuming. EIA is more expensive than CF and MZN but easy to perform and to evaluate and does not need considerably experienced staff in contrast to CF and MZN. Moreover, 45 faecal samples stored for up to 27 days at different temperatures (+6°C, +16°C, +30°C, +40°C) were examined. The sensitivity of microscopic detection of oocysts in stained smears (CF, MZN) decreased in a temperature and time-dependent manner, while EIA results were not influenced by sample storage at any temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abd El Kader NM, Blanco MA, Ali-Tammamm M, Abd El Ghaffar AR, Osman A, El Sheikh N, Rubio JM, de Fuentes I (2011) Detection of Cryptosporidium parvum and Cryptosporidium hominis in human patients in Cairo, Egypt. Parasitol Res. doi:10.1007/s00436-011-2465-6

  2. Amato Neto V, Braz LM, Di Pietro AO, Módolo JR (1996) Oocysts of Cryptosporidium sp in feces: comparison of the modified Kinyoun and Heine methods (in Portuguese, with English abstract). Rev Soc Bras Med Trop 29:575–578

  3. Ayinmode AB, Olakunle FB, Xiao L (2010) Molecular characterization of Cryptosporidium spp. in native calves in Nigeria. Parasitol Res 107:1019–1021

  4. Baxby D, Blundell N (1983) Sensitive, rapid, simple methods for detecting Cryptosporidium in faeces. Lancet 2:1149

  5. Bednarska M, Bajer A, Sinski E, Girouard AS, Tamang L, Graczyk TK (2007) Fluorescent in situ hybridization as a tool to retrospectively identify Cryptosporidium parvum and Giardia lamblia in samples from terrestrial mammalian wildlife. Parasitol Res 100:455–460

  6. Brook EJ, Christley RM, French NP, Hart CA (2008) Detection of Cryptosporidium oocysts in fresh and frozen cattle faeces: comparison of three methods. Lett Appl Microbiol 46:26–31

  7. Brush CF, Walter MF, Anguish LJ, Ghiorse WC (1998) Influence of pretreatment and experimental conditions on electrophoretic mobility and hydrophobicity of Cryptosporidium parvum oocysts. Appl Environ Microbiol 64:4439–4445

  8. Casemore DP, Armstrong M, Sands RL (1985) Laboratory diagnosis of cryptosporidiosis. J Clin Pathol 38:1337–1341

  9. Chalmers RM, Smith RP, Hadfield SJ, Elwin K, Giles M (2011a) Zoonotic linkage and variation in Cryptosporidium parvum from patients in the United Kingdom. Parasitol Res 108:1321–1325

  10. Chalmers RM, Campbell BM, Crouch N, Charlett A, Davies AP (2011b) Comparison of diagnostic sensitivity and specificity of seven Cryptosporidium assays used in the UK. J Med Microbiol 60:1598–1604

  11. Cirak VY, Bauer C (2004) Comparison of conventional coproscopical methods and commercial coproantigen ELISA kits for the detection of Giardia and Cryptosporidium infections in dogs and cats. Berl Munch Tierarztl Wochenschr 117:410–413

  12. Clarke SC, McIntyre M (2001) Acid-fast bodies in faecal smears stained by the modified Ziehl–Neelsen technique. Br J Biomed Sci 58:7–10

  13. Dagan R, Fraser D, El-On J, Kassis I, Deckelbaum R, Turner S (1995) Evaluation of an enzyme immunoassay for the detection of Cryptosporidium spp. in stool specimens from infants and young children in field studies. Am J Trop Med Hyg 52:134–138

  14. Doing KM, Hamm JL, Jellison JA, Marquis JA, Kingsbury C (1999) False-positive results obtained with the Alexon ProSpecT Cryptosporidium enzyme immunoassay. J Clin Microbiol 37:1582–1583

  15. Dyachenko V, Kuhnert Y, Schmaeschke R, Etzold M, Pantchev N, Daugschies A (2010) Occurrence and molecular characterization of Cryptosporidium spp. genotypes in European hedgehogs (Erinaceus europaeus L.) in Germany. Parasitology 137:205–216

  16. El-Moamly AA, El-Sweify MA (2011) ImmunoCard STAT! cartridge antigen detection assay compared to microplate enzyme immunoassay and modified Kinyoun’s acid-fast staining technique for detection of Cryptosporidium in fecal specimens. Parasitol Res. doi:10.1007/s00436-011-2585-z

  17. Fayer R, Ungar BLP (1986) Cryptosporidium spp and cryptosporidiosis. Microbiol Rev 50:458–483

  18. Fayer R, Trout JM, Jenkins MC (1998) Infectivity of Cryptosporidium parvum oocysts stored in water at environmental temperatures. J Parasitol 84:1165–1169

  19. Garcia LS, Shimizu RY (1997) Evaluation of nine immunoassay kits (enzyme immunoassay and direct fluorescence) for detection of Giardia lamblia and Cryptosporidium parvum in human fecal specimens. J Clin Microbiol 35:1526–1529

  20. Garcia LS, Bruckner DA, Brewer TC, Shimizu RY (1983) Techniques for the recovery and identification of Cryptosporidium oocysts from stool specimens. J Clin Micorbiol 18:185–190

  21. Health Protection Agency (2007) Investigation of dermatological specimens for superficial mycoses (BSOP 39). http://www.hpa-standardmethods.org.uk/documents/bsop/pdf/bsop39.pdf

  22. Heine J (1982) A simple technic for the demonstration of cryptosporidia in feces (in German). Zentralbl Veterinarmed B 29:324–327

  23. Henriksen SA, Pohlenz JFL (1981) Staining of cryptosporidia by a modified Ziehl–Neelsen technique. Acta Vet Scand 22:594–596

  24. Hill SL, Cheney JM, Taton-Allen GF, Reif JS, Bruns C, Lappin MR (2000) Prevalence of enteric zoonotic organisms in cats. J Am Vet Med Assoc 216:687–692

  25. Homem CG, Nakamura AA, Silva DC, Teixeira WFP, Coelho WMD, Meireles MV (2011) Real-time PCR assay targeting the actin gene for the detection of Cryptosporidium parvum in calf fecal samples. Parasitol Res. doi:10.1007/s00436-011-2694-8

  26. Ignatius R, Eisenblätter M, Regnath T, Mansmann U, Futh U, Hahn H, Wagner J (1997) Efficacy of different methods for detection of low Cryptosporidium parvum oocyst numbers or antigen concentrations in stool specimens. Eur J Clin Microbiol Infect Dis 16:732–736

  27. Inoue M, Uga S, Oda T, Rai SK, Vesey G, Hotta H (2006) Changes of physical and biochemical properties of Cryptosporidium oocysts with various storage conditions. Water Res 40:881–886

  28. Jenkins M, Trout JM, Higgins J, Dorsch M, Veal D, Fayer R (2003) Comparison of tests for viable and infectious Cryptosporidium parvum oocysts. Parasitol Res 89:1–5

  29. Johnston SP, Ballard MM, Beach MJ, Causer L, Wilkins PP (2003) Evaluation of three commercial assays for detection of Giardia and Cryptosporidium organisms in fecal specimens. J Clin Microbiol 41:623–626

  30. Kehl KSC, Cicirello H, Havens PL (1995) Comparison of four different methods for detection of Cryptosporidium species. J Clin Microbiol 33:416–418

  31. Kváč M, Květoňová D, Salát J, Ditrich O (2007) Viability staining and animal infectivity of Cryptosporidium andersoni oocysts after long-term storage. Parasitol Res 100:213–217

  32. Lemos V, Graczyk TK, Alves M, Lobo ML, Sousa MC, Antunes F, Matos O (2005) Identification and determination of the viability of Giardia lamblia cysts and Cryptosporidium parvum and Cryptosporidium hominis oocysts in human fecal and water supply samples by fluorescent in situ hybridization (FISH) and monoclonal antibodies. Parasitol Res 98:48–53

  33. Marks SL, Hanson TE, Melli AC (2004) Comparison of direct immunofluorescence, modified acid-fast staining, and enzyme immunoassay techniques for detection of Cryptosporidium spp in naturally exposed kittens. J Am Vet Med Assoc 225:1549–1553

  34. Miller JR, Mojica B, Nadle J, Vugia DJ, Waterman SH, Mamer B, Hahn C, Doing KM, Hamm JL, Buker N, Beckett GA, Gensheimer KF, Kludt P, DeMaria A, Ennis J, Keithly J, Kondracki S, Ackman D, Smith P, Warshauer D, Proctor M, Davis J (1999) False-positive laboratory tests for Cryptosporidium involving an enzyme-linked immunosorbent assay—United States, November 1997-March 1998 (Reprinted from MMWR, vol 48, pp 4–8, 1999). J Am Med Assoc 281:411–412

  35. Pardo D, Oliver O (2010) Determination of the infectious agents associated with neonatal calf diarrhoea (NCD) in Colombia. Proc. 26th World Buiatrics Congress, Santiago de Chile, Chile, 14-18 November 2010. Congress proceedings:239

  36. Spain CV, Scarlett JM, Wade SE, McDonough P (2001) Prevalence of enteric zoonotic agents in cats less than 1 year old in central New York State. J Vet Intern Med 15:33–38

  37. Ward LA, Wang YF (2001) Rapid methods to isolate Cryptosporidium DNA from frozen feces for PCR. Diagn Microbiol Infect Dis 41:37–42

  38. Ware MW, Schaefer FW (2005) The effects of time and temperature on flow cytometry enumerated live Cryptosporidium parvum oocysts. Lett Appl Microbiol 41:385–389

Download references

Conflict of interest statement

We disclose any financial and personal relationships with other people or organizations that could inappropriately bias our work.

Author information

Correspondence to Yvonne Kuhnert-Paul.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuhnert-Paul, Y., Bangoura, B., Dittmar, K. et al. Cryptosporidiosis: comparison of three diagnostic methods and effects of storage temperature on detectability of cryptosporidia in cattle faeces. Parasitol Res 111, 165–171 (2012). https://doi.org/10.1007/s00436-011-2813-6

Download citation

Keywords

  • Faecal Sample
  • Cryptosporidium Oocyst
  • Cryptosporidium Infection
  • Oocyst Wall
  • Cattle Faeces