Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis


Using fluorescein isothiocyanate (FITC)-labelled Escherichia coli, phagocytosis in Acanthamoeba is studied. This assay is based on the quenching effect of trypan blue on FITC-labelled E. coli. Only intracellular E. coli retain their fluorescence, which are easily discriminated from non-fluorescent adherent bacteria. Acanthamoeba uptake of E. coli is significantly reduced in the presence of genistein, a protein tyrosine kinase inhibitor. In contrast, sodium orthovanadate (protein tyrosine phosphatase inhibitor) increases bacterial uptake by Acanthamoeba. Treatment of Acanthamoeba with cytochalasin D (actin polymerization inhibitor) abolished the ability of Acanthamoeba to phagocytose E. coli suggesting that tyrosine kinase-mediated signaling may play a role in Acanthamoeba phagocytosis. In addition, we showed that phosphatidylinositol 3-kinase (PI3K) plays an important role in Acanthamoeba uptake of E. coli. Role of mannose-binding protein in Acanthamoeba phagocytosis is discussed further.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Allen PG, Dawidowicz EA (1990) Phagocytosis in Acanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J Cell Physiol 145(3):508–513

  2. Alsam S, Kim KS, Stins M, Rivas AO, Sissons J, Khan NA (2003) Acanthamoeba interactions with human brain microvascular endothelial cells. Microb Pathog 35:235–241

  3. Badger JL, Stins MF, Kim KS (1999) Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect Immun 67:4208–4215

  4. Bowers B, Olszewski TE (1972) Pinocytosis in Acanthamoeba castellanii, kinetics and morphology. J Cell Biol 53(3):681–694

  5. Bowers B, Olszewski TE (1983) Acanthamoeba discriminates internally between digestible and indigestible particles. J Cell Biol 97:317–320

  6. Cantrell DA (2001) Phosphainositide 3-kinase signalling pathways. J Cell Sci 114:1439–1445

  7. Cox D, Tseng CC, Bjekic G, Greenberg S (1999) A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem 274:1240–1247

  8. Coxon PY, Summersgill JT, Ramirez JA, Miller RD (1998) Signal transduction during Legionella pneumophila entry into human monocytes. Infect Immun 66(6):2905–2913

  9. Finlay BB, Ruschkowski S (1991) Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells. J Cell Sci 99:283–296

  10. Garate M, Cao Z, Bateman E, Panjwani N (2004) Cloning and characterization of a novel mannose-binding protein of Acanthamoeba. J Biol Chem 279(28):29849–29856

  11. Jimenez C, Portela RA, Mellado M, Rodriguez-Frade JM, Collard J, Serrano A, Martinez-A C, Avila J, Carrera AC (2000) Role of the PI3K regulatory subunit in the control of actin organization and cell migration. J Cell Biol 151(2):249–262

  12. Khan NA (2003) Pathogenesis of Acanthamoeba infections. Microb Pathog 34(6):277–285

  13. Khan NA, Jarroll EL, Paget TA (2001) Acanthamoeba can be differentiated by the polymerase chain reaction and simple plating assays. Curr Microbiol 43(3):204–208

  14. Khan NA, Wang Y, Kim KJ, Chung JW, Wass CA, Kim KS (2002) Cytotoxic necrotizing factor-1 contributes to Escherichia coli K1 invasion of the central nervous system. J Biol Chem 277(18):15607–15612

  15. Mackay DJ, Hall A (1998) Rho GTPases. J Biol Chem 273(33):20685–20688

  16. Morton LD, McLaughlin GL, Whiteley HE (1991) Effect of temperature, amebic strain and carbohydrates on Acanthamoeba adherence to corneal epithelium in vitro. Infect Immun 59:3819–3822

  17. Mounier J, Laurent V, Hall A, Fort P, Carlier MF, Sansonetti PJ, Egile C (1999) Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J Cell Sci 112(Pt 13):2069–2080

  18. Niederkorn JY, Alizadeh H, Leher H, McCulley JP (1999) The pathogenesis of Acanthamoeba keratitis. Microbes Infect 1(6):437–443

  19. Nizet V, Kim KS, Stins M, Jonas M, Chi EY, Nguyen D, Rubens CE (1997) Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun 65:5074–5081

  20. Reif K, Nobes CD, Thomas G, Hall A, Cantrell DA (1996) Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr Biol 6:1445–1455

  21. Rohloff L-H, Weisner A, Gotz P (1994) A fluorescence assay demonstrating stimulation of phagocytosis by haemolymph molecules of Galleria mellonella. J Insect Physiol 40(12):1045–1049

  22. Sissons J, Alsam S, Jayasekera S, Kim KS, Stins M, Khan NA (2004) Acanthamoeba induces cell-cycle arrest in host cells. J Med Microbiol 53(Pt 8):711–717

  23. Taylor WM, Pidherney MS, Alizadeh H, Niederkorn JY (1995) In vitro characterization of Acanthamoeba castellanii cytopathic effect. J Parasitol 81(4):603–609

  24. Wennström S, Hawkins P, Cooke F, Hara K, Yonezawa K, Kasuga M, Jackson T, Claesson-Welsh L, Stephens L (1994) Activation of phosphainositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr Biol 4:385–396

  25. Wymann MP, Pirola L (1998) Structure and function of phosphainositide 3-kinases. Biochim Biophys Acta 1436:127–150

  26. Yang ZT, Cao ZY, Panjwani N (1997) Pathogenesis of Acanthamoeba keratitis: carbohydrate-mediated host parasite interactions. Infect Immun 65:439–445

Download references


This work is supported by Faculty Research Grant, Birkbeck College, University of London, London, England, UK

Author information

Correspondence to Naveed Ahmed Khan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alsam, S., Sissons, J., Dudley, R. et al. Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis. Parasitol Res 96, 402–409 (2005).

Download citation


  • Genistein
  • Sodium Orthovanadate
  • Human Brain Microvascular Endothelial Cell
  • Stress Fibre Formation
  • Phagocytosis Assay