Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ultrastructure of the lophophoral coelomic lining in the brachiopod Hemithiris psittacea: functional and evolutionary significance

Abstract

The ultrastructure of the lophophoral coelomic lining in the articulate brachiopod Hemithiris psittacea was studied using electron microscopy and confocal laser scanning microscopy. The coelomic system of the lophophore consists of large and small canals; both extend along each brachium. A small coelomic canal gives rise to a blind coelomic canal into each tentacle. The lophophoral coelothelium consists of two types of cells, epithelio-muscle and peritoneal cells, and exhibits different types of organization that is known in the Bilateria: from an epithelium consisting only of epithelio-muscle cells to a pseudostratified myoepithelium. The lophophoral coelothelium forms the musculature and blood vessel wall of the brachia and tentacles. The lophophoral blood vessel runs in the extracellular matrix of the septum that separates the large and small canals. In the lophophoral vessel, the upper wall consists of epithelio-muscle cells, whereas the lower wall is formed by peritoneal cells. The lophophoral vessel gives rise to blind branches into each tentacle. The lophophoral wall is highly muscular and contains both longitudinal and transverse muscles. Because the spirolophe lophophore of H. psittacea is supported only by short crura, the coelomic system of the lophophore is assumed to stabilize the lophophore by regulating the hydrostatic pressure of the coelomic fluid.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Bartolomeus T (1994) On the ultrastructure of the coelomic lining in the Annelida, Sipuncula and Echiura. Microfauna Marina 9:171–220

  2. Beecher CE (1897) Morphology of the Brachia. Bull US Geol Surv 87:105–112

  3. Bulman OMB (1939) Muscle systems of some inarticulate brachiopods. Geol Mag 76:434–444

  4. Cavey MJ, Märkel K (1994) Echinoidea. In: Harrison FW, Chia FS (eds) Microscopic anatomy of invertebrates: Echinodermata V14. Wiley-Liss, New York, pp 345–400

  5. Dolmatov IY, Mashanov VS, Zueva OR (2007) Derivation of muscles of the Aristotle’s lantern from coelomic epithelia. Cell Tissue Res 327:371–384

  6. Emig CC (1992) Functional disposition of the lophophore in living Brachiopoda. Lethaia 25:291–302

  7. Gilmour THG (1981) Food-collecting and waste-rejecting mechanisms in Glottidia pyramidata and the persistence of lingulacean brachiopods in the fossil record. Can J Zool 59:1539–1547

  8. Hancock A (1859) On the organisation of the Brachiopoda. Philos Trans R Soc Lond 148:791–869

  9. Hoverd WA (1985) Histological and ultrastructural observations of the lophophore and larvae of the brachiopod, Notosaria nigricans (Sowerby, 1846). J Nat Hist 19:831–850

  10. Kuga H, Matsuno A (1988) Ultrastructural investigations on the anterior adductor muscle of a brachiopod, Lingula unguis. Cell Struct Funct 13:271–279

  11. Kuzmina TV, Malakhov VV (2007) Structure of the brachiopod lophophore. Paleontol J 41(5):520–536

  12. Kuzmina TV, Malakhov VV (2011) The periesophageal coelom of the articulate brachiopod Hemithyris psittacea (Rhynchonelliformea, Brachiopoda). J Morphol 272:180–190

  13. Kuzmina TV, Malakhov VV, Temereva EN (2006) Anatomy of the coelomic system of articulate brachiopod Hemithiris psittacea (Brachiopoda, Articulata). Zool Zhurn 85:1118–1128 (Russian)

  14. Logan A (2005) A new lacazelline species (Brachiopoda, Recent) from the Maldive Islands, Indian Ocean. Syst Biodivers 3(1):97–104

  15. Mashanov VS, Dolmatov IY (2001) Regeneration of digestive tract in the pentactulae of the far-eastern holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirota). Invertebr Reprod Dev 39:143–151

  16. Peck LS, Rhodes MC, Curry GB, Ansell AD (1997) Physiology. In: Kaesler RL (ed) Treatise on invertebrate paleontology, Part H, Brachiopoda V 1 Introduction. The Geological Society of America Inc and the University of Kansas Boulder Colorado and Lawrence, Kansas, pp 213–242

  17. Pross A (1980) Untersuchungen zur Gliederung von Lingula anatina (Brachiopoda). Archimerie bei Brachiopoden. Zool Jahrb Abt Anat Ontog Tiere 103:250–263

  18. Reed CG, Cloney RA (1977) Brachiopod tentacles: ultrastructure and functional significance of the connective tissue and myoepithelial cells in Terebratalia. Cell Tissue Res 185:17–42

  19. Reynolds WA, McCammon HM (1977) Aspects of the functional morphology of the lophophore in articulate brachiopods. Am Zool 17:121–132

  20. Rickwood AE (1968) A contribution to the life history and biology of the brachiopod Pumilus antiquatus Atkins. Trans R Soc N Z (Zool) 10:163–182

  21. Rieger RM, Lombardi J (1987) Ultrastructure of coelomic lining in echinoderm podia: significance for concepts in the evolution of muscle and peritoneal cells. Zoomorphology 107:191–208

  22. Rudwick MJS (1970) Living and fossil brachiopods. Hutchinson and Co. Ltd., London, p 199

  23. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

  24. Storch V, Welsch U (1976) Elektronenmikroskopische und enzymhistochemische Untersuchungen über Lophophor und Tentakeln von Lingula unguis L. (Brachiopoda). Zool Jahrb Abt Anat Ontog Tiere 96:225–237

  25. Temereva EN (2015) Organization of the coelomic system in (Lophotrochozoa: Phoronida) and consideration of the coelom in the lophophorates. J Zool 296(2):79–94

  26. Temereva EN (2017) Ultrastructure of the coelom in the brachiopod Lingula anatina. J Morphol 278:997–1011

  27. Temereva EN, Kuzmina TV (2017) The first data on the innervation of the lophophore in the rhynchonelliform brachiopod Hemithiris psittacea: what is the ground pattern of the lophophore in lophophorates? BMC Evol Biol 17(1):172. https://doi.org/10.1186/s12862-017-1029-5

  28. Temereva EN, Tsitrin EB (2015) Modern data on the innervation of the lophophore in Lingula anatina (Brachiopoda) support the monophyly of the lophophorates. PLOS ONE 10(4):e0123040

  29. Temereva EN, Gebruk AA, Malakhov VV (2015) Demonstration of the preoral coelom in the brachiopod Lingula anatina with consideration of its phylogenetic significance. Zool Anz 256:1–6

  30. Williams A, James MA, Emig CC, Mackay S, Rhodes MC (1997) Brachiopod anatomy. In: Kaesler RL (ed) Treatise on invertebrate paleontology, Part H, Brachiopoda V 1 Introduction. The Geological Society of America Inc and the University of Kansas Boulder Colorado and Lawrence, Kansas, pp 7–189

Download references

Acknowledgements

This study was supported by the Russian Foundation for Basic Research, Project no. 17-04-00586 and the Russian Foundation for Basic Research, Project no. 15-29-02601. The research was performed at the User Facilities Center of M.V. Lomonosov Moscow State University with financial support from the Ministry of Education and Science of the Russian Federation.

Author information

Correspondence to Tatyana V. Kuzmina.

Ethics declarations

Conflict of interest

This research is not in consideration or published elsewhere. All co-authors approve the submission of this manuscript. The authors declare that they have no conflict of interest.

Ethical standards

The use of brachiopods in the laboratory does not raise any ethical issues, and therefore approval from regional and local research ethics committees was not required. The field sampling did not involve endangered or protected species. In accordance with local guidelines, permission for collection of material was not required.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuzmina, T.V., Temereva, E.N. & Malakhov, V.V. Ultrastructure of the lophophoral coelomic lining in the brachiopod Hemithiris psittacea: functional and evolutionary significance. Zoomorphology 137, 257–272 (2018). https://doi.org/10.1007/s00435-018-0397-8

Download citation

Keywords

  • Brachiopod anatomy
  • Lophophore
  • Ultrastructure
  • Coelomic epithelium
  • Muscular system
  • Blood system
  • Hemithiris psittacea