Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Differences in femoral morphology between sheep (Ovis aries) and goat (Capra hircus): macroscopic and microscopic observations


It is often difficult, if not impossible, to separate postcranial elements of species, such as sheep and goats. Distinguishing between the skeletal remains of these species is important in a variety of scientific fields, such as comparative anatomy, taxonomy, biomechanical engineering, as well as zooarchaeology and palaeontology. The aim of this study was to assess morphological and morphometric differences of microscopic and macroscopic characteristics of the femur of sheep and goats, to be used to distinguish between these species. Approximately one hundred sheep and goat femora were examined. Microscopic results indicated that osteon and Haversian canal diameters are parameters useful to the distinction between sheep and goats. Twelve macroscopical features, which successfully separated goat and sheep femora, were identified and discussed, four of which were described for the first time with a mathematical approach. These differences could be related to the behavioural and locomotion patterns of the two species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Balasse M, Ambrose SH (2005) Distinguishing sheep and goats using dental morphology and stable carbon isotopes in C4 grassland environments. J Archaeol Sci 32:691–702

  2. Bar-Gal GK, Ducos P, Horwitz LK (2003) The application of ancient DNA analysis to identify neolithic caprinae: a case study from the site of Hatoula, Israel. Int J Osteoarchaeol 13:120–131

  3. Barone R (2010) Anatomie comparée des mammifères domestiques. Tome I, Osteologie. Vigot, Paris

  4. Boessneck J (1970) Osteological differences between sheep (Ovis aries Linné) and goats (Capra hircus Linné). In: Brothwell D, Higgs E (eds) Science in archaeology. Praeger, New York, pp 331–358

  5. Boessneck J, Müller HH, Teichert M (1964) Osteologische Unterscheidungmerkmale zwischen Schaf (Ovis aries Linné) und Ziege (Capra hircus Linné). Kühn-Archiv 78:1–129

  6. Bouma HW, De Boer SS, De Vos J, Van Kampen PM, Hogervorst A (2013) Mammal hip morphology and function: coxa recta and coxa rotunda. Anat Rec 296:250–256

  7. Bouma H, Slot N-J, Toogood P, Pollard T, Van Kampen P, Hogervorst T (2014) Where is the neck? Alpha angle measurement revisited. Acta Orthopaed 85:147–151

  8. Brits D, Steyn ML, L’Abbé EN (2014) A histomorphological analysis of human and non-human femora. Int J Legal Med 128:369–377

  9. Buckley M, Kansa SW, Howard S, Campbell S, Thomas-Oates J, Collins M (2010) Distinguishing between archaeological sheep and goat bones using a single collagen peptide. J Archaeol Sci 37:13–20

  10. Campbell S, Carter E, Healey E, Anderson S, Kennedy A, Whitcher S (1999) Emerging complexity on the Kahramanmaras plain, Turkey: the Domuztepe project, 1995–1997. Am J Archaeol 103:395–418

  11. Clutton-Brock J, Dennis-Bryan K, Armitage PL (1990) Osteology of the Soay Sheep. Bull Br Mus Nat Hist (Zool) 56:1–56

  12. Cornevin C, Lesbre F-X (1891) Caractères ostéologiques différentiels de la chèvre et du mouton. Bull Soc Anthropol Lyon 10:47–73

  13. Croft P (2003) The animal bones. In: Peltenburg E (ed) The colonisation and settlement of Cyprus: investigations at Kissonerga-Mylouthkia. Astrom, Savedalen, pp 49–56

  14. Davis SJM (1985) A preliminary report of the fauna from Hatoula: a Natufian Khiamian (PPNA) site near Latroun, Israel. In: Lechevallier M, Ronen A (eds) Le Site Natoufien-Khiamien de Hatoula Press de Latroun, Israel, vol 1., Les Cahiers de Recherche du Centre de Recherche française de JerusalemAssociation Paleorient, Paris, pp 71–98

  15. Dominguez VM, Crowder CM (2012) The utility of osteon shape and circularity for differentiating human and non-human Haversian bone. Am J Phys Anthropol 149:84–91

  16. Enlow DH, Brown SO (1956) A comparative histological study of fossil and recent bone tissues. Part I. Tex J Sci 8:405–443

  17. Gentry AW (1970) The Bovidae (Mammalia) of the Fort Ternan fossil fauna. In: Leakey LSB, Savage RJG (eds) Fossil vertebrates of Africa. Academic Press, London, pp 243–323

  18. Giua S, Farina V, Cacchioli A, Ravanetti F, Carcupino M, Mohadero Novas M, Zedda M (2014) Comparative histology of the femur between mouflon (Ovis aries musimon) and sheep (Ovis aries aries). J Biol Res 87:74–77

  19. Grine FE, Krause DW, Fosse G, Jungers WL (1987) Analysis of individual, intraspecific and interspecific variability in quantitative parameters of caprine tooth enamel structure. Acta Odontol Scand 45:1–23

  20. Gudea A, Stefan AC (2013) Histomorphometric, fractal and lacunarity comparative analysis of sheep (Ovis aries), goat (Capra hircus) and roe deer (Capreolus capreolus) compact bone samples. Folia Morphol 72:239–248

  21. Haile J, Holdaway R, Oliver K, Bunce M, Gilbert MTP, Nielsen R, Munch K, Ho SYW, Shapiro B, Willerslev E (2007) Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol Biol Evol 24:982–989

  22. Halstead P, Collins P, Isaakidou V (2002) Sorting the sheep from the goats: morphological distinctions between the mandibles and mandibular teeth of adult Ovis and Capra. J Archaeol Sci 29:545–553

  23. Helmer D (2000) Discrimination des genres Ovis et Capra à l’aide des prémolaires inférieures 3 et 4 et interpretation des ages d’abbatage: l’example de Dikili Tash (Grèce). Anthropozoologica 31:29–38

  24. Helmer D, Rocheteau M (1994). Atlas du squelette appendiculaire des principaux genres Holocènes de petits ruminants du nord de la Mèditerranèe et du Proche-Orient (Capra, Ovis, Rupicapra, Capreolus, Gazella). Fiches d’ostéologie animale pour l’archéologie. Série B: Mammifères. Centre de recherches archéologiques du CNRS, APDCA, Juan-Les-Pins, pp 3–21

  25. Hernandez-Fernandez A, Vélez R, Soldado F, Saenz-Ríos JC, Barber I, Aguirre-Canyadell M (2013) Effect of administration of platelet-rich plasma in early phases of distraction osteogenesis: an experimental study in an ovine femur model. Injury 44:901–907

  26. Kappelman J (1988) Morphology and locomotor adaptations of the bovid femur in relation to habitat. J Morphol 198:119–130

  27. Kappelman J (1991) The paleoenvironment of Kenyapithecus at Fort Ternan. J Hum Evol 20:95–129

  28. Kappelman J, Plummer T, Bishop L, Appleton AD, Appleton S (1997) Bovids as indicators of Plio-Pleistocene paleoenvironments in East Africa. J Hum Evol 32:229–256

  29. Kratochvil Z (1969) Species criteria on the distal section of the tibia in Ovis ammon F. aries L. and Capra aegagrus F. hircus L. Acta Vet Brno 38:483–490

  30. Leonard JA, Shanks O, Hofreiter M, Kreuz E, Hodges L, Ream W, Wayne RK, Fleischer RC (2007) Animal DNA in PCR reagents plagues ancient DNA research. J Archaeol Sci 34:1361–1366

  31. Loreille O, Vigne JD, Hardy C, Callou C, Treinen-Claustre F, Dennebouy N, Monnerot M (1997) First distinction of sheep and goat archaeological bones by the means of their fossil mtDNA. J Archaeol Sci 24:33–37

  32. Luikart G, Gielly L, Excoffier L, Vigne JD, Bouvet J, Taberlet P (2001) Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci USA 98:5927–5932

  33. Martiniaková M, GrosskopfB Omelka R, Dammers K, Vondráková M, Bauerová M (2007a) Histological study of compact bone tissue in some mammals: a method for species determination. Int J Osteoarchaeol 17:82–90

  34. Martiniaková M, Grosskopf B, Omelka R, Vondráková M, Bauerová M (2007b) Histological analysis of ovine compact bone tissue. J Vet Med Sci 69:409–411

  35. Matthee CA, Davis SK (2001) Molecular insights into the evolution of the Family Bovidae: a nuclear DNA perspective. Mol Biol Evol 18:1220–1230

  36. Mayya A, Banerjee A, Rajesh R (2013) Mammalian cortical bone in tension is non-Haversian. Sci Rep 3:2533

  37. Metz LN, Martin B, Turner S (2003) Histomorphometric analysis of the effects of osteocyte density on osteonal morphology and remodelling. Bone 33:753–759

  38. Mulhern DM, Ubelaker DH (2001) Differences in osteon banding between human and nonhuman bone. J Forensic Sci 46:220–222

  39. Newman ME, Parboosingh JS, Bridge PJ, Ceri H (2002) Identification of archaeological animal bone by PCR/DNA analysis. J Archaeol Sci 29:77–84

  40. Nielsen-Marsh C (2002) Biomolecules in fossil remains. Biochem 24:12–14

  41. Nomina Anatomica Veterinaria, Fifth edition by International Committee on Veterinary Gross Anatomical Nomenclature 2012. Hannover, Columbia, Ghent, Sapporo

  42. Oheim R, Amling M, Ignatius A, Pogoda P (2012) Large animal model for osteoporosis in humans: the ewe. Eur Cells Mater 24:372–385

  43. Payne S (1969) A metrical distinction between sheep and goat metacarpals. In: Ucko PJ, Dimbleby GW (eds) The domestication and exploitation of plants and animals. Duckworth, London, pp 295–306

  44. Payne S (1985) Morphological distinctions between the mandibular teeth of young sheep, Ovis and goats, Capra. J Archaeol Sci 12:139–147

  45. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cells Mater 13:1–10

  46. Pearson JA, Buitenhuis H, Hedges REM, Martin L, Russell N, Twiss KC (2007) New light on early caprine herding from isotope analysis: a case study from Neolithic Anatolia. J Archaeol Sci 34:2170–2179

  47. Pourlis A, Chatzis T, Katsoulos P (2014) Comparison of two methods for the measurement of medial and lateral metapodial bones in karagouniko sheep (Ovis aries, L. 1758) and Hellenic goat (Capra hircus, L. 1758). Anat Res Int 2014:1–5

  48. Prummel W, Frisch H-J (1986) A guide for the distinction of species, sex, and body size of sheep and goat. J Archaeol Sci 13:567–577

  49. Ropiquet A, Hassanin A (2005) Molecular evidence for the polyphyly of the genus Hemitragus (Mammalia, Bovidae). Mol Phylogenet Evol 36:154–168

  50. Rozzi R, Palombo MR (2013) Do methods for predicting paleohabitats apply for mountain and insular fossil bovids? Integr zool 8:244–259

  51. Rozzi R, Winkler DE, De Vos J, Schulz E, Palombo MR (2013) The enigmatic bovid Duboisia santeng (Dubois, 1891) from the Early-Middle Pleistocene of Java: a multiproxy approach to its paleoecology. Palaeogeogr Palaeoclimatol Palaeoecol 377:73–85

  52. Schramm Z (1967) Kosci dlugie a wysokosé w klebie kozy. Roczniki wyzszej szkoly rolniczej w Poznaniu 36:89–105

  53. Serrat MA, Reno PL, McCollum M, Meindl RS, Lovejo CO (2007) Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns. J Anat 210:249–258

  54. Skedros JC (2005) Osteocyte lacuna population densities in sheep, elk and horse calcanei. Cells Tissues Organs 181:23–37

  55. Skedros JG, Mason MW, Bloebaum RD (1994) Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure. Anat Rec 239:405–413

  56. Skedros JG, Knight AN, Clark GC, Crowder CM, Dominguez VM, Qiu S, Mulhern DM, Donahue SW, Busse B, Hulsey BI, Zedda M, Sorenson SM (2013) Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones. Am J Phys Anthropol 151:230–244

  57. Teichert M (1975) Osteometrische Untersuchungen zur Berechnung der Widerristhöhe bei Schafen. In: Clason AT (ed) Archaeozoological studies. American Elsevier, New York, pp 51–69

  58. Vigne JD (2011) The origins of animal domestication and husbandry: a major change in the history of humanity and biosphere. C R Biol 334:171–181

  59. von den Driesch A (1976) A guide to the measurement of animal bones from archaeological sites. Harv Univ Peabody Mus Archaeol Ethnol Bull 1:1–137

  60. Von den Driesch A, Wodtke U (1997) The fauna of’Ain Ghazal, a major PPN and early PM settlement in central Jordan. In: Gebel H, Kafafi Z, Rollefson G (eds) The Prehistory of Jordan II. Perspectives from 1997. Ex Orient, Berlin, pp 511–543

  61. Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc B Bio Sci 272:3–16

  62. Zarrinkalam MR, Mulaibrahimovic A, Atkins GJ, Moore RJ (2012) Changes in osteocyte density correspond with changes in osteoblast and osteoclast activity in an osteoporotic sheep model. Osteoporosis Int 23:1329–1336

  63. Zedda M, Lepore G, Manca P, Chisu V, Farina V (2008) Comparative bone histology of adult horses (Equus caballus) and cows (Bos taurus). Anat Histol Embryol 37:442–445

  64. Zedda M, Lepore G, Biggio GP, Gadau S, Mura E, Farina V (2015) Morphology, morphometry and spatial distribution of secondary osteons in equine femur. Anat Histol Embryol 44:328–332

  65. Zeder MA, Lapham HA (2010) Assessing the reliability of criteria used to identify postcranial bones in sheep, Ovis, and goats, Capra. J Archaeol Sci 37:2887–2905

  66. Zeder MA, Pilaar SE (2009) Assessing the reliability of criteria used to identify mandibles and mandibular teeth of sheep, Ovis, and goats, Capra. J Archaeol Sci 37:225–242

Download references

Author information

Correspondence to Marco Zedda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zedda, M., Palombo, M.R., Brits, D. et al. Differences in femoral morphology between sheep (Ovis aries) and goat (Capra hircus): macroscopic and microscopic observations. Zoomorphology 136, 145–158 (2017). https://doi.org/10.1007/s00435-016-0329-4

Download citation


  • Sheep
  • Goat
  • Femur
  • Comparative anatomy
  • Bone tissue