Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A new type of stalk articulation in the sea lily genus Vityazicrinus (Echinodermata, Crinoidea) and its ontogeny

Abstract

A new stalk articulation named pseudo-synarthry is here described from the mesistele of Vityazicrinus petrachenkoi, a rare deep-sea crinoid from the Central Pacific Ocean. Pseudo-synarthries have an articulation facet displaying a general structure closely resembling the morphology of the true synarthry, i.e., with a strong bilateral symmetry and deep ligament depressions. Pseudo-synarthries differ from synarthries in lacking a hinge-like fulcral ridge and developing two additional depressions bordered by prominent crescent ridges at opposite sides of the bilateral symmetry axis. Pseudo-synarthries develop in the mesistele below a proxistele articulated by symplexies of 6–8 crenular units. Distally, subsidiary radial ridges appear on the outer edge of ligamentary depressions and tend to multiply, transforming pseudo-synarthries into multiradiate syzygies, as previously observed in the genus Guillecrinus. A chaotic polymeric pattern locally appears in the proxistele and mesistele, which tends to develop into a holomeric pattern during growth, devoid of any visible trace of ossicle fusion. Both early columnal ontogeny in comatulid larvae and the transition from a polymeric to a holomeric pattern in the guillecrinid stalk lead to the rejection of the hypothesis that the monomeric columnal results from the fusion of pre-existing ossicles. Among Guillecrinidae, pseudo-synarthries constitute derived characters that are unique to the Vityazicrinus mesistele. The development of radial subsidiary ridges in the distal stalk corresponds to a synapomorphy shared by Vityazicrinus and Guillecrinus, the two only genera currently attributed to this family. Pseudo-synarthries in Vityazicrinus appear as advanced stalk articulations adapted to the deep-sea environment, which are unknown from the fossil record.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Améziane N, Roux M (2003) Environmental control of ontogeny in the stalked crinoid Guillecrinus. In: Feral JP, David B (eds) Echinoderm research 2001. AA Balkema, Rotterdam, pp 143–148

  2. Améziane N, Roux M (2005) Environmental control versus phylogenic fingerprint in ontogeny: the example of the development of the stalk in the genus Guillecrinus (stalked crinoids, Echinodermata). J Nat Hist 39(30):2815–2859

  3. Améziane N, Roux M (2011) Stalked crinoids from Tasmanian seamounts. Part 1: Hyocrinidae. J Nat Hist 45(3–4):137–170

  4. Bather FA (1900) The Echinodermata. The Pelmatozoa. In: Lankester ER (ed) A treatise on zoology, part 3. The Crinoidea. Adam & Charles Black, London, pp 94–204

  5. Baumiller TK (2008) Crinoid ecological morphology. Annu Rev Earth Planet Sci 36:221–249

  6. Birenheide R, Motokawa T (1994) Morphological basis and mechanics of arm movement in the stalked crinoids Metacrinus rotundus (Echinodermata, Crinoidea). Mar Biol 121:273–283

  7. Birenheide R, Yokoyama K, Motokawa T (2000) Cirri of the stalked crinoid Metacrinus rotundus: neural elements and the effect of cholinergic agonists on mechanical properties. Proc R Soc Lond 267:7–16

  8. Breimer A (1978) General morphology. Recent crinoids. In: Moore RC, Teichert C (eds) Treatise on invertebrate palaeontology, Part T, Echinodermata 2, 1, Geological Society of America, Boulder, Colorado, and University of Kansas, Lawrence, pp T9–T58

  9. Eléaume M, Hemery LG, Bowden D, Roux M (2011) A large new species of the genus Ptilocrinus (Echinodermata, stalked Crinoidea, Hyocrinidae) from Antarctic seamount. Pol Biol 34(9):1385–1397

  10. Gilbert SF, Sarkar S (2000) Embracing complexity: organicism for the 21st century. Dev Dynam 219:1–9

  11. Gould SJ (1977) Ontogeny and phylogeny. The Belknap Press of Harvard University Press, Cambridge, pp 1–501

  12. Grimmer JC, Holland ND, Hayami I (1985) Fine structure of the stalk of an isocrinid sea lily (Metacrinus rotundus). Zoomorphology 105:39–50

  13. Guensburg TE (1992) Paleoecology of hardground encrusting and commensal crinoids, Middle Ordovician. Tenn J Paleontol 66:129–147

  14. Guensburg TE (2012) Phylogenetic implications of the oldest crinoids. J Paleontol 86(3):455–461

  15. Heinzeller T, Welsch U (1994) Crinoidea. In: Harrison FW, Chia FS (eds) Microscopic anatomy of invertebrates, 14 Echinodermata. Wiley-Liss Inc, New York, pp 9–148

  16. Hemery LG (2011) Diversité moléculaire, phylogénie et phylogéographie des Crinoïdes (Echinodermes) dans un environnement extrême: l’océan Austral. Ph.D., Muséum national d’Histoire naturelle, Paris

  17. Hemery LG, Roux M, Améziane N, Eléaume M (2013) High-resolution crinoid phyletic inter-relationships derived from molecular data. Cah Biol Mar 54:511–523

  18. Hess H (2011) Articulata: introduction. In: Hess H, Messing CG, Ausich WI (eds) Treatise on invertebrate paleontology, part T, Echinodermata 2, revised Crinoidea, 3. University of Kansas, Paleontological Institute, Kansas, pp 1–261

  19. Holland ND, Grimmer JC, Wiegmann K (1991) The structure of the sea lily Calamocrinus diomedae, with special reference to the articulations, skeletal microstructure, symbiotic bacteria, axial organs, and stalk tissues (Crinoida, Millericrinida). Zoomorphology 3:115–132. doi:10.1007/BF01632868

  20. Kupiec JJ (1997) A Darwinian theory for the origin of cellular differentiation. Mol Gen Genet 225:201–208

  21. Kupiec JJ (2008) L’origine des individus. Fayard, Paris

  22. Kupiec JJ (2012) L’ontophylogenèse. Evolution des espèces et développement de l’individu. Sciences en question. Quae, Versailles

  23. Lahaye MC, Jangoux M (1987) The skeleton of stalked stages of the comatulid crinoid Antedon bifida (Echinodermata). Fine structure and changes during growth. Zoomorphology 107:58–65

  24. Macurda DB, Meyer DL, Roux M (1978) The crinoid stereom. In: Moore RC, Teichert C (eds) Treatise on Invertebrate Palaeontology, Part T, Echinodermata 2, 1, Geological Society of America, Boulder, Colorado, and University of Kansas, Lawrence, pp T217–T228

  25. Macurda DB, Meyer DL (1974) Feeding posture of modern stalked crinoids. Nature 247:394–396

  26. Mironov AN, Sorokina OA (1998) Sea lilies of the order Hyocrinida (Echinodermata, Crinoidea). Zool Issled 2:1–117

  27. Moore RC, Teichert C (1978) Treatise on invertebrate palaeontology. Part T, Echinodermata 2(1), Geological Society of America & University of Kansas, Lawrence

  28. Mortensen T (1920) Studies in the development of crinoids. Carnegie Institution, Department of Marine Biology, Papers 16:1–94

  29. Motokawa T, Shintani O, Birenheide R (2004) Contraction and stiffness changes in collagenous arm ligaments of the stalked crinoid Metacrinus rotundus (Echinodermata). Biol Bull 206:4–12

  30. Rouse GW, Jermiin L, Wilson NG, Eeckhaut I, Lanterbecq D, Oji T, Young CM, Browning T, Cisternas P, Helgen L, Stuckey M, Messing CG (2013) Fixed, free and fixed: the fickle phylogeny of extant Crinoidea (Echinodermata) and their Permo-Triassic origin. Mol Phylogenet Evol 66:161–181

  31. Roux M (1977) Les Bourgueticrinina (Crinoidea) recueillis par la “Thalassa” dans le golfe de Gascogne: anatomie comparée des pédoncules et systématique. Bull Mus Nat Hist Nat Paris, sér. 3, 426(Zool 296):26–82

  32. Roux M (1980) Les articulations du pédoncule des Hyocrinidae (Echinodermes, Crinoïdes pédonculés): intérêt systématique et conséquences. Bull Mus Nat Hist Nat Paris (4)2, A, 1:31–57

  33. Roux M (1987) Evolutionary ecology and biogeography of recent stalked crinoids as a model for the fossil record. In: Lawrence JM, Jangoux M (eds) Echinoderm studies, 2nd edn. A.A. Balkema, Rotterdam, pp 1–53

  34. Roux M, Lambert P (2011) Two new species of stalked crinoids from the north-eastern Pacific in the genera Gephyrocrinus and Ptilocrinus (Echinodermata, Crinoidea, Hyocrinidae). Effects of ontogeny and variability on hyocrinid taxonomy. Zootaxa 2825:1–54

  35. Roux M, Améziane N, David J (1997) Compromis adaptatifs et ontogenèse chez les Crinoïdes pédonculés. Geobios 30:319–327

  36. Roux M, Messing CG, Améziane N (2002) Artificial keys to the genera of living stalked crinoids (Echinodermata). Bull Mar Sci 70(3):799–830

  37. Roux M, Eléaume M, Hemery LG, Améziane N (2013) When morphology meets molecular data in crinoid phylogeny: a challenge. Cah Biol Mar 54:541–548

  38. Shibata TF, Sato A, Oji T, Akasaka K (2008) Development and growth of the feather star Oxycomanthus japonica to sexual maturity. Zool Sci 25:1075–1083

  39. Ubaghs G (1978) Skeletal morphology of fossil crinoids. In: Moore RC, Teichert C (eds), Treatise on Invertebrate Palaeontology, Part T, Echinodermata 2, 1, Geological Society of America, Boulder, Colorado, and University of Kansas, Lawrence pp T58–T216

  40. Waddington CH (1956) Epigenetics and evolution. Sym Soc Exp Biol 7:186–199

  41. Wilkie IC (1983) Nervously mediated change in the mechanical properties of the cirral ligaments of a crinoid. Mar Behav Physiol 9:229–248

  42. Wilkie IC (2005) Mutable collagenous tissue: overview and biotechnological perspective. In: Matranaga V (ed) Echinodermata. Springer, Berlin, pp 221–250

  43. Wilkie IC, Emson RH, Young CM (1994) Variable tensility of the ligaments in the stalk of a sea-lily. Comp Biochem Physiol 109A:633–641

Download references

Acknowledgments

The material was kindly provided by David Pawson and Chad Walter (NMNH). The SEM pictures were made at the Plate-forme de Microscopie Eléctronique at the Muséum national d’Histoire naturelle (MNHN), Paris. This work was funded by three Actions Transversales du MNHN: ‘Biodiversité actuelle et fossile; crises, stress, restaurations et panchronisme: le message systématique’, ‘Taxonomie moléculaire: DNA Barcode et gestion durable des collections’ and ‘Biominéralisation’. We also thank the two anonymous reviewers who helped improve this manuscript.

Author information

Correspondence to Marc Eléaume.

Additional information

Communicated by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eléaume, M., Roux, M. & Améziane, N. A new type of stalk articulation in the sea lily genus Vityazicrinus (Echinodermata, Crinoidea) and its ontogeny. Zoomorphology 133, 307–320 (2014). https://doi.org/10.1007/s00435-014-0222-y

Download citation

Keywords

  • Echinodermata
  • Crinoidea
  • Vityazicrinus
  • Stalk ontogeny
  • Pseudo-synarthry
  • Monomeric columnal origin