Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Morphogenesis accompanying larval metamorphosis in Plakina trilopha (Porifera, Homoscleromorpha)

  • 162 Accesses

  • 9 Citations

Abstract

Morphological investigations of morphogenesis accompanying the metamorphosis of the cinctoblastula larva of poriferan Plakina trilopha (Homoscleromorpha) have been made. The larva possesses a distinct columnar epithelium which subdivides into three cellular areas: antero-lateral, postero-lateral, and posterior one. Characteristic morphological features of the cells in each area can be used as natural markers when tracing the fate of larval cells during metamorphosis. The ciliated epithelium of the larva is transformed directly into choanoderm and pinacoderm, without losing its organization. This transformation is a peculiar feature of the metamorphosis in Homoscleromorpha. Metamorphosis in P. trilopha is based on epithelial morphogenesis and includes the mechanisms of flattening of the exopinacoderm, evagination and invagination of larval epithelium in the course of the development of the rhagon aquiferous system. The flattening of larval cells during exopinacoderm formation in metamorphosing P. trilopha is a common change of cell shape during epithelial morphogenesis of this species. The separation of proximal fragments of cells has been observed here. This phenomenon, that we have called “cytoplasmic shedding”, appears to play an important role in the change of epithelial cell shape in P. trilopha. Mechanism of epithelial–mesenchymal transition, i.e., ingression of epithelial ciliated cells into the cavity of the metamorphosing larva of P. trilopha participates in mesohylar cell origin.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adamska M, Degnan BM, Green KM, Amanski M, Craigie A (2007) Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS ONE 2:e1031

  2. Adell T, Nefkens I, Müller WEG (2003) Polarity factor ‘Frizzled’ in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pinacoderm. FEBS Lett 554:363–368

  3. Beloussov LV (1998) The dynamic architecture of a developing organism. Kluwer Academic Publishers, Dordrecht

  4. Borchiellini C, Chombard C, Manuel M, Alivon E, Vacelet J, Boury-Esnault N (2004) Molecular phylogeny of Demospongiae: implications for classification and scenarios of character evolution. Mol Phylog Evol 32:823–837

  5. Boury-Esnault N, Rützler K (eds) (1997) Thesaurus of sponge morphology. Smithson Contrib Zool 596:1–55

  6. Boury-Esnault N, Muricy G, Gallissian M-F, Vacelet J (1995) Sponges without skeleton: a new Mediterranean genus of Homoscleromorpha (Porifera, Demospongiae). Ophelia 43:25–43

  7. Boury-Esnault N, Ereskovsky AV, Bezac C, Tokina D (2003) Larval development in Homoscleromorpha (Porifera, Demospongiae) first evidence of basal membrane in sponge larvae. Invert Biol 122:187–202

  8. Boute N, Exposito JY, Boury-Esnault N, Vacelet J, Noro N, Miyazaki K, Yoshigato K, Garrone R (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44

  9. de Caralt S, Uriz MJ, Ereskovsky AV, Wijffels RH (2007) Embryo development of Corticium candelabrum (Demospongiae: Homosclerophorida). Invert Biol 126:211–219

  10. Ereskovsky AV (2004) Comparative embryology of Sponges and its application for poriferan phylogeny. Boll Mus Ist Biol Univ Genova 68:301–318

  11. Ereskovsky AV (2006) A new species of Oscarella (Demospongiae: Plakinidae) from the Western Sea of Japan. Zootaxa 1376:37–51

  12. Ereskovsky AV, Boury-Esnault N (2002) Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha), transmission of maternal cells and symbiotic bacteria. J Nat Hist 36:1761–1775

  13. Ereskovsky AV, Dondua AK (2006) The problem of germ layers in sponges (Porifera) and some issues concerning early metazoan evolution. Zool Anzeig 245:65–76

  14. Ereskovsky AV, Tokina DB (2007) Asexual reproduction in homoscleromorph sponges (Porifera; Homoscleromorpha). Mar Biol 151:425–434

  15. Ereskovsky AV, Tokina DB, Bézac C, Boury-Esnault N (2007) Metamorphosis of Cinctoblastula Larvae (Homoscleromorpha, Porifera). J Morphol 268:518–528

  16. Ereskovsky AV, Borchiellini C, Gazave E, Ivanisevic J, Lapebie P, Pérez T, Renard E, Vacelet J (2009) The Homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology. BioEssays 31:89–97

  17. Fernàndez-Busquets X (2008) The sponge as a model of cellular recognition. In: Conn PM (ed) Sourcebook of models for biomedical research. Humana Press, New Jersey, pp 75–83

  18. Fristrom D (1988) The cellular basis of epithelial morphogenesis. A review. Tissue Cell 20:645–690

  19. Gaino E, Manconi R, Pronzato R (1995) Organizational plasticity as a successful conservative tactics in sponges. Anim Biol 4:31–43

  20. Hardin J (1989) Local shift in position and polarized motility drive cell rearrangement during sea urchin gastrulation. Dev Biol 136:430–445

  21. Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dynam 233:706–720

  22. Humbert-David N, Garrone R (1993) A six-armed, tenascin-like protein extracted from the Porifera Oscarella tuberculata (Homosclerophorida). Eur J Biochem 216:255–260

  23. Keller R, Davidson LA, Shook DR (2003) How we are shaped: the biomechanics of gastrulation. Differentiation 71:171–205

  24. Kimberly EL, Hardin J (1998) Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Dev Biol 204:235–250

  25. Korotkova GP (1997) Regeneration in animal. Saint-Petersburg University Press, Saint-Petersburg

  26. Kraus Y, Technau U (2006) Gastrulation in the sea anemone Nematostella vectensis occurs by invagination and immigration: an ultrastructural study. Dev Genes Evol 216:119–132

  27. Lapébie P, Gazave E, Ereskovsky AV, Derelle R, Bézac C, Houliston E, Borchiellini C (2009) Conserved roles for WNT signalling in metazoan epithelial morphogenesis: Insights from a homoscleromorph sponge. PlosONE 4(6):e5823. doi:10.1371/journal.pone.0005823

  28. Maldonado M, Riesgo A (2008) Reproductive output in a Mediterranean population of the homosclerophorid Corticium candelabrum (Porifera, Demospongiae), with notes on the ultrastructure and behavior of the larva. Mar Ecol 29:298–316

  29. Meewis H (1938) Contribution à l’étude de l’embryogénèse des Myxospongidae: Halisarca lobularis (Schmidt). Arch Biol Liège 50:1–66

  30. Mergner H (1971) Cnidaria. In: Reveberi G (ed) Experimental embryology of marine and fresh-water invertebrates. North Holland, Amsterdam, pp 1–84

  31. Misevic GN, Ripoll C, Norris J, Norris V, Guerardel Y, Maes E, Strecker G, Ballet P, Karamanos Y, Sumanovski LT, Popescu O, Misevic N (2007) Evolution of multicellularity in Porifera via selfassembly of glyconectin carbohydrates. In: Lobo-Hajdu G, Custódio MR, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability, vol 28. Museu Nacional, Rio de Janeiro, pp 79–88

  32. Muricy G, Boury-Esnault N, Bézac C, Vacelet J (1996) Cytological evidence for cryptic speciation in Mediterranean Oscarella species (Porifera, Homoscleromorpha). Can J Zool 74:881–896

  33. Nichols SA (2005) An evaluation of support for order-level monophyly and interrelationships within the class Demospongiae using partial data from the large subunit rDNA and cytochrome oxidase subunit I. Mol Phylog Evol 34:81–96

  34. Peterson KJ, Butterfield NJ (2005) Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. PNAS 102:9547–9552

  35. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini K, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Queinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Worheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol. doi:10.1016/j.cub.2009.02.052

  36. Riesgo A, Maldonado M, Durfort M (2007) Dynamics of gametogenesis, embryogenesis, and larval release in a Mediterranean homosclerophorid demosponge. Mar Fresh Res 58:398–417

  37. Schöck F, Perrimon N (2002) Molecular mechanisms of epithelial morphogenesis. Ann Rev Cell Dev Biol 18:463–493

  38. Schulze FE (1880) Untersuchungen Über den Bau und die Entwicklung der Spongien. Die Plakiniden. Zeitsch Wiss Zool 34:407–451

  39. Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech Dev 120:1351–1383

  40. Sperling EA, Pisani D, Peterson KJ (2007) Poriferan paraphyly and its implications for Precambrian palaeobiology. Geol Soc Lond Spec Publ 286:355–368

  41. Tepass U, Tanentzapf G, Ward R, Fehon R (2001) Epithelial cell polarity and cell junctions in Drosophila. Ann Rew Gene 35:747–784

  42. Tyler S (2003) Epithelium—the primary building block for metazoan complexity. Integr Comp Biol 43:55–63

  43. van Soest RWM (1984) Deficient Merlia normani Kirkpatrick, 1908, from the Curaçao Reefs, with a discussion of the phylogenetic interpretation of Sclerosponges. Bijdr Dierkd 53:211–219

Download references

Acknowledgments

The author is warmly grateful to Dr. Nicole Boury-Esnault, Dr. Carole Borchiellini, Dr Jean Vacelet and Dr. Thierry Perez Centre d’Océanologie de Marseille, for helpful discussions, to Chantal Bézac, Centre d’Océanologie de Marseille, for technical assistance and Thierry Perez, Roland Graille and Pierre Chevaldonné for diving assistance. This work was also financially supported partially by the Russian Foundation for Basic Research (grants no. 06-04-48660 and 09-04-00337) and by grant of Marie Curie IIF MIF1-CT-2006-040065 PHENOMED.

Author information

Correspondence to Alexander V. Ereskovsky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ereskovsky, A.V., Konyukov, P.Y. & Tokina, D.B. Morphogenesis accompanying larval metamorphosis in Plakina trilopha (Porifera, Homoscleromorpha). Zoomorphology 129, 21–31 (2010). https://doi.org/10.1007/s00435-009-0097-5

Download citation

Keywords

  • Morphogenesis
  • Metamorphosis
  • Porifera
  • Ultrastructure
  • Larva
  • Plakina
  • Homoscleromorpha