, 125:225 | Cite as

Functional morphology of Tethya species (Porifera): 2. Three-dimensional morphometrics on spicules and skeleton superstructures of T. minuta

  • Michael NickelEmail author
  • Eric Bullinger
  • Felix Beckmann
Original Article


The biomechanics of body contraction in Porifera is almost unknown, although sponge contraction has been observed already in ancient times. Some members of the genus Tethya represent the most contractile poriferan species. All of them show a highly ordered skeleton layout. Based on three main spicule types, functional units are assembled, termed skeleton superstructures here. Using synchrotron radiation based x-ray microtomography and quantitative image analysis with specially developed particle and structure recognition algorithms allowed us to perform spatial allocation and 3D-morphometric characterizations of single spicules and skeleton superstructures in T. minuta. We found and analyzed three skeleton superstructures in the investigated specimen: (1) 85 megasclere bundles, (2) a megaster sphere, composed by 16,646 oxyasters and (3) a pinacoderm–tylaster layer composed by micrasters. All three skeleton superstructures represent composite materials of siliceous spicules and extracellular matrix. From structure recognition we developed an abstracted mathematical model of the bundles and the sphere. In addition, we analyzed the megaster network interrelation topology and found a baso-apical linear symmetry axis for the megaster density inside the sphere. Based on our results, we propose a hypothetical biomechanical contraction model for T. minuta and T. wilhelma, in which the skeleton superstructures restrain physical stress generated by contraction in the tissue. While skeletal structures within the genus Tethya have been explained using R. Buckminster Fullers principle of tensegrity by other authors, we prefer material science based biomechanical approaches, to understand skeletal superstructures by referring to their composite material properties.


Porifera Tethya Microtomography Biomechanics Tensegrity Skeleton superstructure Composite materials Synchrotron radiation 



We thank Hannes Kirchhauser (Vivarium, State Museum for Natural History, Karlsruhe) for providing sponge material; Ulrich Grün and Thomas Wallmersperger (both Institute for Statics and Dynamics of Aerospace Structures, Stuttgart University) as well as Jörg Hammel (Biological Institute, Stuttgart University) and Birgit Nickel (Stuttgart) for discussion; Hans-Dieter Görtz and Franz Brümmer (both Biological Institute, Stuttgart University) and Frank Allgöwer (Institute for Systems Theory and Automatic Control, Stuttgart University) for providing infrastructure and support. MN received DESY travel grants based on DESY projects I-04-062 and I-03-059.

Supplementary material

435_2006_22_MOESM1_ESM.pdf (54 kb)
Supplementary material 1
435_2006_22_MOESM2_ESM.pdf (3.3 mb)
Supplementary material 2

Supplementary material 3

Supplementary material 4

Supplementary material 5

Supplementary material 6

435_2006_22_MOESM7_ESM.avi (1.9 mb)
Supplementary material 7


  1. Abràmoff M (2000–2004) VolumeJ. VolumeJ–volume rendering in Java. 1.71
  2. Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278. Scholar
  3. Bavestrello G, Calcinai B, Ceccati L, Cerrano C, Sarà M (2000) Skeletal development in two species of Tethya (Porifera, Demospongiae). Ital J Zool 67:241–244CrossRefGoogle Scholar
  4. Beckmann F, Donath T, Dose T, Lippmann T, Martins RV, Metge J, Schreyer A (2004) Microtomography using synchrotron radiation at DESY: current status and future developments. In: Bonse U (ed.) Developments in X-Ray Tomography IV: SPIE Proceedings 5535, pp 1–10Google Scholar
  5. Bond C (1992) Continuous cell movements rearrange anatomical structures in intact sponges. J Exp Zool 263:284–302PubMedCrossRefGoogle Scholar
  6. Bond C, Harris AK (1988) Locomotion of sponges and its physical mechanism. J Exp Zool 246:271–284PubMedCrossRefGoogle Scholar
  7. Boury Esnault N, Rützler K (1997) Thesaurus of sponge morphology. Smithson Contrib Zool 596:1–55Google Scholar
  8. Fishelson L (1981) Observations on the moving colonies of the genus Tethya (Demospongia, Porifera). 1. Behaviour and cytology. Zoomorphology 98:89–99CrossRefGoogle Scholar
  9. Fuller RB (1961) Tensegrity. Portfolio 4:112–127Google Scholar
  10. Guth E (1945) Theorie of Filler reinforcement. J Appl Phys 16:20–25CrossRefGoogle Scholar
  11. Huesman RH, Gullberg GT, Greenberg WL, Budinger TF (1977) RECLBL Library users manual: Donner algorithms for reconstruction tomography. Lawrence Berkeley Laboratory, University of CaliforniaGoogle Scholar
  12. Ingber DE (1998) The architecture of life. Sci Am 278:48–57PubMedCrossRefGoogle Scholar
  13. Ingber DE (2003a) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173. Google Scholar
  14. Ingber DE (2003b) Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408. Google Scholar
  15. Ingber DE, Heidemann SR, Lamoureux P, Buxbaum RE (2000) Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol 89:1663–1678. Google Scholar
  16. Koehl MAR (1982) Mechanical design of spicule-reinforced connective tissue: stiffness. J Exp Biol 98:239–268Google Scholar
  17. Koehl MAR (1996) When does morphology matter. Annu Rev Ecol Syst 27:501–542CrossRefGoogle Scholar
  18. Marshall W (1885) Coelenterata, porifera, tetractinellidae; Tafel XLVII. In: Leuckart R (ed.) Zoologische Wandttafeln der wirbellosen Thiere. Th. Fischer, KasselGoogle Scholar
  19. Minchin E (1900) Sponges. In: Lancester ER (ed) A treatise on zoology. Part II. The porifera and coelentera. Adam & Charles Black, London, pp 1–178Google Scholar
  20. Mullins L (1980) Theories of rubber-like elasticity and the behaviour of fille rubber. Symp Soc Exp Biol 34:273–288PubMedGoogle Scholar
  21. Nickel M (2001) Cell biology and biotechnology of marine invertebrates—sponges (Porifera) as model organisms. Arb Mitteil Biol Inst Uni Stuttgart 32:1–157Google Scholar
  22. Nickel M (2004) Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae). J Exp Biol 207:4515–4524PubMedCrossRefGoogle Scholar
  23. Nickel M, Brümmer F (2003) In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847). J Biotechnol 100:147–159PubMedCrossRefGoogle Scholar
  24. Nickel M, Brümmer F (2004) Body extension types of Tethya wilhelma: cellular organisation and their function in movement. Boll Mus Ist Biol Univ Genova 68:483–489Google Scholar
  25. Nickel M, Donath T, Schweikert M, Beckmann F (2006) Functional Morphology of Tethya species (Porifera): 1. Quantitative 3D-analysis of T. wilhelma by synchrotron radiation based x-ray microtomography. Zoomorphology (in press). DOI 10.1007/s00435-006-0021-1Google Scholar
  26. Palumbi SR (1986) How body plans limit acclimation responses of a demosponge to wave force. Ecology 67:208–214CrossRefGoogle Scholar
  27. Rasband WS (1997–2004) ImageJ. National Institutes of Health, Bethesda, Maryland, USA. 1.33
  28. Redi CA, Garagna S, Zuccotti M, Capanna EHZ (2002) Visual zoology. The Pavia collection of Leuckart’s zoological wall charts (1877). Ibis, ComoGoogle Scholar
  29. Sarà M (1994) A rearrangement of the family Tethyidae (Porifera Hadromerida) with establishment of new genera and description of two new species. Zool J Linn Soc 110:355–371CrossRefGoogle Scholar
  30. Sarà M (1998) A Biogeographic and evolutionary survey of the genus Tethya (Porifera, Demospongiae). In: Watanabe Y, Fusetani N (eds.) Sponge sciences. Multidisciplinary perspectives. Springer, Berlin Heidelberg New York, pp 83–94Google Scholar
  31. Sarà M (2002) Family Tethyidae Gray 1848. In: Hooper JNA, Van Soest RMW (eds.) Systema Porifera: a guide to the classification of sponges, vol 1. Kluwer Academic/Plenum Publishers, New York, pp 245–265Google Scholar
  32. Sarà M, Manara E (1991) Cortical structure and adaptation in the genus Tethya (Porifera, Demospongiae). In: Reitner J, Keupp H (eds) Fossil and recent sponges. Springer, Berlin Heidelberg New York, pp 306–312Google Scholar
  33. Sarà M, Sarà A (2004) A revision of Australian and New Zealand Tethya (Porifera:Demospongiae) with a preliminary analysis of species grouping. Invertebr Syst 18:117–156CrossRefGoogle Scholar
  34. Sarà M, Gómez P, Sarà A (2001a) East Pacific Mexican Tethya (Porifera: Demospongiae) with descriptions of five new species. Proceedings of the Biological Society of Washington 114:794–821Google Scholar
  35. Sarà M, Sarà A, Nickel M, Brümmer F (2001b) Three new species of Tethya (Porifera: Demospongiae) from German aquaria. Stuttgarter Beitr Naturk Ser A 631:1–15Google Scholar
  36. Vandenberghe L, Boyd S, Wu S-P (1998) Determinant maximization with linear matrix inequality constraints. SIAM J Matrix Anal Appl 19:499–533CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michael Nickel
    • 1
    Email author
  • Eric Bullinger
    • 2
  • Felix Beckmann
    • 3
  1. 1.Department of Zoology, Biological InstituteUniversity of StuttgartStuttgartGermany
  2. 2.Hamilton InstituteNational University of IrelandCo. KildareIreland
  3. 3.GKSS-Research CenterGeesthachtGermany

Personalised recommendations