Journal of Cancer Research and Clinical Oncology

, Volume 145, Issue 12, pp 2901–2910 | Cite as

Oncogenic potential of nucleoporins in non-hematological cancers: recent update beyond chromosome translocation and gene fusion

  • Adhiraj RoyEmail author
  • Gopeshwar Narayan
Review – Cancer Research



The nuclear pore complex is comprised of approximately 30 proteins named nucleoporins (Nups) and tightly regulates nucleocytoplasmic transport of macromolecules across the nuclear membrane. Genetic alterations in many NUP genes are associated with many human maladies, such as neurological disease, autoimmune disorders and cancer.


We reviewed the status quo of recent advancement of the knowledge of oncogenic role of nucleoporins in human carcinogenesis, focusing on major non-hematological malignancies in the recent literature. Both clinical study-derived and experiment-based reports were critically reviewed. We have also discussed the potential of nucleoporins as novel cancer biomarkers and promising therapeutic target against human malignancies.


Several Nups such as Nup53, Nup88, Nup98, Nup160 and Nup214 modulated a plethora of cellular and physiological pathways involved in tumorigenesis such as GSK3β-Snail, Wnt/β-Catenin and RanGap1/RanBP2 signaling axes, DNA damage response, resistance to apoptosis and chemotherapy.


Although classically, majority of studies have shown oncogenic roles of nucleoporins as genetic fusion partners in several types of leukemia, emerging evidence suggests that nucleoporins also modulate many cellular signaling pathways that are associated with several major non-hematological malignancies, such as carcinomas of skin, breast, lung, prostate and colon. Hence, nucleoporins are emerging as novel therapeutic targets in human tumors.


Nuclear pore complex Nucleoporins Signaling pathway Biomarker Cancer 



Nuclear membrane


Nuclear pore complex




Atomic force microscopy


Acute myeloid leukemia


Chronic myeloid leukemia


Acute biphenotypic leukemia


Triple negative breast cancer


Prostate cancer


Castration-resistant prostate cancer


Squamous cell carcinoma


Cervical intraepithelial neoplasia




Pancreatic ductal adenocarcinoma



This work was supported by the Ramalingaswami Re-entry fellowship Grant (BT/HRD/35/02/2006), Department of Biotechnology, Govt. of India to AR.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest to disclose.


  1. Agudo D, Gomez-Esquer F, Martinez-Arribas F, Nunez-Villar MJ, Pollan M, Schneider J (2004) Nup88 mRNA overexpression is associated with high aggressiveness of breast cancer. Int J Cancer 109(5):717–720PubMedGoogle Scholar
  2. Aitchison JD, Rout MP (2012) The yeast nuclear pore complex and transport through it. Genetics 190(3):855–883PubMedPubMedCentralGoogle Scholar
  3. Akkafa F, Koyuncu I, Temiz E, Dagli H, Dilmec F, Akbas H (2018) miRNA-mediated apoptosis activation through TMEM 48 inhibition in A549 cell line. Biochem Biophys Res Commun 503(1):323–329PubMedGoogle Scholar
  4. Alanee S, Delfino K, Wilber A, Robinson K, Brard L, Semaan A (2017) Single nucleotide variant in nucleoporin 107 may be predictive of sensitivity to chemotherapy in patients with ovarian cancer. Pharmacogenet Genom 27(7):264–269Google Scholar
  5. Basel-Vanagaite L, Muncher L, Straussberg R, Pasmanik-Chor M, Yahav M, Rainshtein L, Walsh CA, Magal N, Taub E, Drasinover V et al (2006) Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol 60(2):214–222PubMedGoogle Scholar
  6. Bhattacharjya S, Roy KS, Ganguly A, Sarkar S, Panda CK, Bhattacharyya D, Bhattacharyya NP, Roychoudhury S (2015) Inhibition of nucleoporin member Nup214 expression by miR-133b perturbs mitotic timing and leads to cell death. Mol Cancer 14:42PubMedPubMedCentralGoogle Scholar
  7. Bonnet A, Palancade B (2014) Regulation of mRNA trafficking by nuclear pore complexes. Genes 5(3):767–791PubMedPubMedCentralGoogle Scholar
  8. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 68(6):394–424PubMedGoogle Scholar
  9. Brustmann H, Hager M (2009) Nucleoporin 88 expression in normal and neoplastic squamous epithelia of the uterine cervix. Ann Diagn Pathol 13(5):303–307PubMedGoogle Scholar
  10. Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, Bock T, Hagen W, Andres-Pons A, Glavy JS et al (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155(6):1233–1243PubMedGoogle Scholar
  11. Choi YL, Lira ME, Hong M, Kim RN, Choi SJ, Song JY, Pandy K, Mann DL, Stahl JA, Peckham HE et al (2014) A novel fusion of TPR and ALK in lung adenocarcinoma. J Thorac Oncol 9(4):563–566PubMedGoogle Scholar
  12. Closa A, Cordero D, Sanz-Pamplona R, Sole X, Crous-Bou M, Pare-Brunet L, Berenguer A, Guino E, Lopez-Doriga A, Guardiola J et al (2014) Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis. Carcinogenesis 35(9):2039–2046PubMedPubMedCentralGoogle Scholar
  13. Emig S, Schmalz D, Shakibaei M, Buchner K (1995) The nuclear pore complex protein p62 is one of several sialic acid-containing proteins of the nuclear envelope. J Biol Chem 270(23):13787–13793PubMedGoogle Scholar
  14. Emterling A, Skoglund J, Arbman G, Schneider J, Evertsson S, Carstensen J, Zhang H, Sun XF (2003) Clinicopathological significance of Nup88 expression in patients with colorectal cancer. Oncology 64(4):361–369PubMedGoogle Scholar
  15. Fradkin LG, Budnik V (2016) This bud’s for you: mechanisms of cellular nucleocytoplasmic trafficking via nuclear envelope budding. Curr Opin Cell Biol 41:125–131PubMedPubMedCentralGoogle Scholar
  16. Gasset-Rosa F, Chillon-Marinas C, Goginashvili A, Atwal RS, Artates JW, Tabet R, Wheeler VC, Bang AG, Cleveland DW, Lagier-Tourenne C (2017) Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport. Neuron. 94(1):48–57PubMedPubMedCentralGoogle Scholar
  17. Gough SM, Slape CI, Aplan PD (2011) NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 118(24):6247–6257PubMedPubMedCentralGoogle Scholar
  18. Gould VE, Orucevic A, Zentgraf H, Gattuso P, Martinez N, Alonso A (2002) Nup88 (karyoporin) in human malignant neoplasms and dysplasias: correlations of immunostaining of tissue sections, cytologic smears, and immunoblot analysis. Hum Pathol 33(5):536–544PubMedGoogle Scholar
  19. Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA (1997) Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosom Cancer 19(2):112–123PubMedGoogle Scholar
  20. Grima JC, Daigle JG, Arbez N, Cunningham KC, Zhang K, Ochaba J, Geater C, Morozko E, Stocksdale J, Glatzer JC et al (2017) Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron. 94(1):93–107PubMedPubMedCentralGoogle Scholar
  21. Hazawa M, Lin DC, Kobayashi A, Jiang YY, Xu L, Dewi FRP, Mohamed MS, Hartono Nakada M, Meguro-Horike M et al (2018) ROCK-dependent phosphorylation of NUP62 regulates p63 nuclear transport and squamous cell carcinoma proliferation. EMBO Rep 19(1):73–88PubMedGoogle Scholar
  22. Juhlen R, Fahrenkrog B (2018) Moonlighting nuclear pore proteins: tissue-specific nucleoporin function in health and disease. Histochem Cell Biol 150(6):593–605PubMedGoogle Scholar
  23. Kabachinski G, Schwartz TU (2015) The nuclear pore complex–structure and function at a glance. J Cell Sci 128(3):423–429PubMedPubMedCentralGoogle Scholar
  24. Karacosta LG, Kuroski LA, Hofmann WA, Azabdaftari G, Mastri M, Gocher AM, Dai S, Hoste AJ, Edelman AM (2016) Nucleoporin 62 and Ca(2 +)/calmodulin dependent kinase kinase 2 regulate androgen receptor activity in castrate resistant prostate cancer cells. Prostate 76(3):294–306PubMedGoogle Scholar
  25. Karakoula K, Suarez-Merino B, Ward S, Phipps KP, Harkness W, Hayward R, Thompson D, Jacques TS, Harding B, Beck J et al (2008) Real-time quantitative PCR analysis of pediatric ependymomas identifies novel candidate genes including TPR at 1q25 and CHIBBY at 22q12-q13. Genes Chromosom Cancer 47(11):1005–1022PubMedGoogle Scholar
  26. Kikutake C, Yahara K (2016) Identification of epigenetic biomarkers of lung adenocarcinoma through multi-omics data analysis. PLoS One 11(4):e0152918PubMedPubMedCentralGoogle Scholar
  27. Kim NH, Pham NB, Quinn RJ, Shim JS, Cho H, Cho SM, Park SW, Kim JH, Seok SH, Oh JW et al (2015) The small molecule R-(-)-beta-O-methylsynephrine binds to nucleoporin 153 kDa and inhibits angiogenesis. Int J Biol Sci 11(9):1088–1099PubMedPubMedCentralGoogle Scholar
  28. Kinoshita Y, Ito H, Hirano A, Fujita K, Wate R, Nakamura M, Kaneko S, Nakano S, Kusaka H (2009) Nuclear contour irregularity and abnormal transporter protein distribution in anterior horn cells in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 68(11):1184–1192PubMedGoogle Scholar
  29. Kinoshita Y, Kalir T, Rahaman J, Dottino P, Kohtz DS (2012) Alterations in nuclear pore architecture allow cancer cell entry into or exit from drug-resistant dormancy. Am J Pathol 180(1):375–389PubMedPubMedCentralGoogle Scholar
  30. Kinoshita Y, Hunter RG, Gray JD, Mesias R, McEwen BS, Benson DL, Kohtz DS (2014) Role for NUP62 depletion and PYK2 redistribution in dendritic retraction resulting from chronic stress. Proc Natl Acad Sci USA 111(45):16130–16135PubMedGoogle Scholar
  31. Knoess M, Kurz AK, Goreva O, Bektas N, Breuhahn K, Odenthal M, Schirmacher P, Dienes HP, Bock CT, Zentgraf H et al (2006) Nucleoporin 88 expression in hepatitis B and C virus-related liver diseases. World J Gastroenterol 12(36):5870–5874PubMedPubMedCentralGoogle Scholar
  32. Kraemer D, Wozniak RW, Blobel G, Radu A (1994) The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc Natl Acad Sci USA 91(4):1519–1523PubMedGoogle Scholar
  33. Labade AS, Karmodiya K, Sengupta K (2016) HOXA repression is mediated by nucleoporin Nup93 assisted by its interactors Nup188 and Nup205. Epigenetics Chromatin 9:54PubMedPubMedCentralGoogle Scholar
  34. Laurell E, Beck K, Krupina K, Theerthagiri G, Bodenmiller B, Horvath P, Aebersold R, Antonin W, Kutay U (2011) Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144(4):539–550PubMedGoogle Scholar
  35. Li F, Zhai YP, Tang YM, Wang LP, Wan PJ (2012) Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosom Cancer 51(9):890–897PubMedGoogle Scholar
  36. Liashkovich I, Pasrednik D, Prystopiuk V, Rosso G, Oberleithner H, Shahin V (2015) Clathrin inhibitor Pitstop-2 disrupts the nuclear pore complex permeability barrier. Sci Rep 5:9994PubMedPubMedCentralGoogle Scholar
  37. Lim KS, Wong RW (2018) Targeting nucleoporin POM121-Importin beta axis in prostate cancer. Cell Chem Biol 25(9):1056–1058PubMedGoogle Scholar
  38. Lu T, Bao Z, Wang Y, Yang L, Lu B, Yan K, Wang S, Wei H, Zhang Z, Cui G (2016) Karyopherinbeta1 regulates proliferation of human glioma cells via Wnt/beta-catenin pathway. Biochem Biophys Res Commun 478(3):1189–1197PubMedGoogle Scholar
  39. Makise M, Nakamura H, Kuniyasu A (2018) The role of vimentin in the tumor marker Nup88-dependent multinucleated phenotype. BMC Cancer 18(1):519PubMedPubMedCentralGoogle Scholar
  40. Makiyama K, Hamada J, Takada M, Murakawa K, Takahashi Y, Tada M, Tamoto E, Shindo G, Matsunaga A, Teramoto K et al (2005) Aberrant expression of HOX genes in human invasive breast carcinoma. Oncol Rep 13(4):673–679PubMedGoogle Scholar
  41. Martinez N, Alonso A, Moragues MD, Ponton J, Schneider J (1999) The nuclear pore complex protein Nup88 is overexpressed in tumor cells. Cancer Res 59(21):5408–5411PubMedGoogle Scholar
  42. Mohamed MS, Kobayashi A, Taoka A, Watanabe-Nakayama T, Kikuchi Y, Hazawa M, Minamoto T, Fukumori Y, Kodera N, Uchihashi T et al (2017) High-speed atomic force microscopy reveals loss of nuclear pore resilience as a dying code in colorectal cancer cells. ACS Nano 11(6):5567–5578PubMedGoogle Scholar
  43. Mullan PB, Bingham V, Haddock P, Irwin GW, Kay E, McQuaid S, Buckley NE (2019) NUP98—a novel predictor of response to anthracycline-based chemotherapy in triple negative breast cancer. BMC Cancer 19(1):236PubMedPubMedCentralGoogle Scholar
  44. Naylor RM, Jeganathan KB, Cao X, van Deursen JM (2016) Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy. J Clin Investig 126(2):543–559PubMedGoogle Scholar
  45. Nofrini V, Di Giacomo D, Mecucci C (2016) Nucleoporin genes in human diseases. Eur J Hum Genet 24(10):1388–1395PubMedPubMedCentralGoogle Scholar
  46. Pante N, Fahrenkrog B (2014) Exploring nuclear pore complex molecular architecture by immuno-electron microscopy using Xenopus oocytes. Methods Cell Biol 122:81–98PubMedGoogle Scholar
  47. Re A, Colussi C, Nanni S, Aiello A, Bacci L, Grassi C, Pontecorvi A, Farsetti A (2018) Nucleoporin 153 regulates estrogen-dependent nuclear translocation of endothelial nitric oxide synthase and estrogen receptor beta in prostate cancer. Oncotarget 9(46):27985–27997PubMedPubMedCentralGoogle Scholar
  48. Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, Woo J, Koh AP, Ertel A, Lokareddy RK et al (2018) Nuclear pores promote lethal prostate cancer by increasing POM121-driven E2F1, MYC, and AR nuclear import. Cell 174(5):1200–1215PubMedPubMedCentralGoogle Scholar
  49. Ryan KJ, White CC, Patel K, Xu J, Olah M, Replogle JM, Frangieh M, Cimpean M, Winn P, McHenry A et al (2017) A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants. Sci Transl Med 9(421):eaai7635PubMedPubMedCentralGoogle Scholar
  50. Sakuma S, D’Angelo MA (2017) The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell Dev Biol 68:72–84PubMedPubMedCentralGoogle Scholar
  51. Sheffield LG, Miskiewicz HB, Tannenbaum LB, Mirra SS (2006) Nuclear pore complex proteins in Alzheimer disease. J Neuropathol Exp Neurol 65(1):45–54PubMedGoogle Scholar
  52. Shen Q, Yu M, Jia J-K, Li W-X, Tian Y-W, Xue H-Z (2018) Possible molecular markers for the diagnosis of pancreatic ductal adenocarcinoma. Med Sci Monit 24:2368–2376PubMedPubMedCentralGoogle Scholar
  53. Shi J, Li C, Wang H, Xiao B, Qiu W (2019) NUP58 facilitates metastasis and epithelial-mesenchymal transition of lung adenocarcinoma via the GSK-3beta/Snail signaling pathway. Am J Transl Res 11(1):393–405PubMedPubMedCentralGoogle Scholar
  54. Soman NR, Correa P, Ruiz BA, Wogan GN (1991) The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci USA 88(11):4892–4896PubMedGoogle Scholar
  55. Takahashi N, van Kilsdonk JW, Ostendorf B, Smeets R, Bruggeman SW, Alonso A, van de Loo F, Schneider M, van den Berg WB, Swart GW (2008) Tumor marker nucleoporin 88 kDa regulates nucleocytoplasmic transport of NF-kappaB. Biochem Biophys Res Commun 374(3):424–430PubMedGoogle Scholar
  56. Takeda A, Yaseen NR (2014) Nucleoporins and nucleocytoplasmic transport in hematologic malignancies. Semin Cancer Biol 27:3–10PubMedGoogle Scholar
  57. Takeshima H, Wakabayashi M, Hattori N, Yamashita S, Ushijima T (2015) Identification of coexistence of DNA methylation and H3K27me3 specifically in cancer cells as a promising target for epigenetic therapy. Carcinogenesis 36(2):192–201PubMedGoogle Scholar
  58. Tan X, Zhou L, Wang W, Wang B, Egami H, Baba H, Dai X (2010) Genomic analysis of invasion-metastasis-related factors in pancreatic cancer cells. Exp Ther Med 1(1):211–216PubMedPubMedCentralGoogle Scholar
  59. Tian C, Zhou S, Yi C (2018) High NUP43 expression might independently predict poor overall survival in luminal A and in HER2 + breast cancer. Future Oncol 14(15):1431–1442PubMedGoogle Scholar
  60. von Lindern M, van Baal S, Wiegant J, Raap A, Hagemeijer A, Grosveld G (1992) Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: characterization of the set gene. Mol Cell Biol 12(8):3346–3355Google Scholar
  61. Wente SR, Rout MP (2010) The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2(10):a000562PubMedPubMedCentralGoogle Scholar
  62. Wu Y, Fang G, Wang X, Wang H, Chen W, Li L, Ye T, Gong L, Ke C, Cai Y (2019) NUP153 overexpression suppresses the proliferation of colorectal cancer by negatively regulating Wnt/beta-catenin signaling pathway and predicts good prognosis. Cancer Biomark 24(1):61–70PubMedGoogle Scholar
  63. Zhang H, Schneider J, Rosdahl I (2002) Expression of p16, p27, p53, p73 and Nup88 proteins in matched primary and metastatic melanoma cells. Int J Oncol 21(1):43–48PubMedGoogle Scholar
  64. Zhang ZY, Zhao ZR, Jiang L, Li JC, Gao YM, Cui DS, Wang CJ, Schneider J, Wang MW, Sun XF (2007) Nup88 expression in normal mucosa, adenoma, primary adenocarcinoma and lymph node metastasis in the colorectum. Tumour Biol 28(2):93–99PubMedGoogle Scholar
  65. Zhao ZR, Zhang ZY, He XQ, Hu YM, Tian YF, Zhang LJ, Sun XF (2010) Nup88 mRNA overexpression in colorectal cancers and relationship with p53. Cancer Biomark 8(2):73–80PubMedGoogle Scholar
  66. Zhao ZR, Zhang LJ, Wang YY, Li F, Wang MW, Sun XF (2012) Increased serum level of Nup88 protein is associated with the development of colorectal cancer. Med Oncol 29(3):1789–1795PubMedGoogle Scholar
  67. Zhou MH, Yang QM (2014) NUP214 fusion genes in acute leukemia (Review). Oncol Lett 8(3):959–962PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Interdisciplinary School of Life Sciences, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Molecular and Human Genetics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations