Advertisement

5-Azacytidine modulates CpG methylation levels of EZH2 and NOTCH1 in myelodysplastic syndromes

  • Anja L. Gawlitza
  • Johanna Speith
  • Jenny Rinke
  • Roman Sajzew
  • Elena K. Müller
  • Vivien Schäfer
  • Andreas Hochhaus
  • Thomas ErnstEmail author
Original Article – Clinical Oncology

Abstract

Purpose

Molecular mechanisms of response to hypomethylating agents in patients with myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) still remain largely unknown. Therefore, the effects of 5-Azacytidine (Aza) on clonal architecture and DNA methylation were investigated in this study.

Methods

Using next-generation sequencing (NGS), 30 myeloid leukemia-associated genes were analyzed in 15 MDS/CMML patients with excellent response to Aza. Effects on methylation levels were analyzed by quantitative methylation analysis using pyrosequencing for the global methylation marker LINE-1 in patients and myeloid cell lines. Various myeloid cell lines and a healthy cohort were screened for methylation levels in 23 genes. Selected targets were verified on the MDS/CMML cohort.

Results

The study presented here showed a stable variant allele frequency and stable global methylation levels in responding patients. A significant demethylation of EZH2 and NOTCH1 was revealed in patients with Aza response.

Conclusions

A response to Aza is not associated with eradication of malignant clones, but rather with a stabilization of the clonal architecture. We suggest changes in CpG methylation levels of EZH2 and NOTCH1 as potential targets of epigenetic response to Aza treatment which may also serve as useful biomarkers after clinical evaluation.

Keywords

5-Azacytidine Azacitidine Myelodysplastic syndromes CpG methylation EZH2 NOTCH1 

Notes

Funding

This study was funded by the Interdisciplinary Center for Clinical Research (IZKF), Universitätsklinikum Jena, Germany.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

432_2019_3016_MOESM1_ESM.docx (291 kb)
Supplementary material 1 (DOCX 290 kb)

References

  1. Ades L, Sekeres MA, Wolfromm A, Teichman ML, Tiu RV, Itzykson R et al (2013) Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res 37(6):609–613CrossRefGoogle Scholar
  2. Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A (2014) LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One 9(10):e109478CrossRefGoogle Scholar
  3. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D et al (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67(3):876–880CrossRefGoogle Scholar
  4. Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49(5):825–837CrossRefGoogle Scholar
  5. Chang CW, Lu TP, She CX, Feng YC, Hsiao CK (2016) Gene-set analysis with CGI information for differential DNA methylation profiling. Sci Rep 19(6):24666CrossRefGoogle Scholar
  6. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022CrossRefGoogle Scholar
  7. Fenaux P, Ades L (2009) Review of azacitidine trials in intermediate-2- and high-risk myelodysplastic syndromes. Leuk Res 33(Suppl 2):S7–11CrossRefGoogle Scholar
  8. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A et al (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10(3):223–232CrossRefGoogle Scholar
  9. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Gattermann N, Germing U et al (2010) Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 28(4):562–569CrossRefGoogle Scholar
  10. European Medicines Agency (2018) EMA/450923/2016 – Vidaza, Annex I, summary of product characteristics. https://www.ema.europa.eu/en/medicines/human/EPAR/vidaza
  11. Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N et al (2010) A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One 5(2):e9001CrossRefGoogle Scholar
  12. Illingworth RS, Bird AP (2009) CpG islands–‘a rough guide’. FEBS Lett 583(11):1713–1720CrossRefGoogle Scholar
  13. Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK (2012) On the presence and role of human gene-body DNA methylation. Oncotarget 3(4):462–474CrossRefGoogle Scholar
  14. Jones PA (1999) The DNA methylation paradox. Trends Genet 15(1):34–37CrossRefGoogle Scholar
  15. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492CrossRefGoogle Scholar
  16. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266CrossRefGoogle Scholar
  17. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefGoogle Scholar
  18. Ma X, Wang YW, Zhang MQ, Gazdar AF (2013) DNA methylation data analysis and its application to cancer research. Epigenomics 5(3):301–316CrossRefGoogle Scholar
  19. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257CrossRefGoogle Scholar
  20. Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M et al (2016) Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun 24(7):10767CrossRefGoogle Scholar
  21. Pleyer L, Greil R (2015) Digging deep into “dirty” drugs-modulation of the methylation machinery. Drug Metab Rev 47(2):252–279CrossRefGoogle Scholar
  22. Rinke J, Schafer V, Schmidt M, Ziermann J, Kohlmann A, Hochhaus A et al (2013) Genotyping of 25 leukemia-associated genes in a single work flow by next-generation sequencing technology with low amounts of input template DNA. Clin Chem 59(8):1238–1250CrossRefGoogle Scholar
  23. Schäfer V, Ernst J, Rinke J, Winkelmann N, Beck JF, Hochhaus A, Gruhn B, Ernst T (2016) EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 142(7):1641–1650CrossRefGoogle Scholar
  24. Stresemann C, Bokelmann I, Mahlknecht U, Lyko F (2008) Azacytidine causes complex DNA methylation responses in myeloid leukemia. Mol Cancer Ther 7(9):2998–3005CrossRefGoogle Scholar
  25. Wang H, Hu H, Zhang Q, Yang Y, Li Y, Hu Y et al (2013) Dynamic transcriptomes of human myeloid leukemia cells. Genomics 102(4):250–256CrossRefGoogle Scholar
  26. Xie H, Wang M, Bonaldo Mde F, Smith C, Rajaram V, Goldman S et al (2009) High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum. Nucleic Acids Res 37(13):4331–4340CrossRefGoogle Scholar
  27. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32(3):e38CrossRefGoogle Scholar
  28. Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C et al (2013) Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8(5):e63812CrossRefGoogle Scholar
  29. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J et al (2018) Ensembl 2018. Nucleic Acids Res 46(D1):D754–D761CrossRefGoogle Scholar
  30. Zheng Y, Joyce BT, Liu L, Zhang Z, Kibbe WA, Zhang W et al (2017) Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res 45(15):8697–8711CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin IIUniversitätsklinikum JenaJenaGermany
  2. 2.Otto Schott Institute of Materials ResearchFriedrich Schiller UniversityJenaGermany

Personalised recommendations