Clinical impact of PD-L1 and PD-1 expression in squamous cell cancer of the vulva

  • Fabinshy ThangarajahEmail author
  • Bernd Morgenstern
  • Caroline Pahmeyer
  • Lars Mortimer Schiffmann
  • Julian Puppe
  • Peter Mallmann
  • Stefanie Hamacher
  • Reinhard Buettner
  • Christina Alidousty
  • Barbara Holz
  • Andreas H. Scheel
  • Anne Maria SchultheisEmail author
Original Article – Clinical Oncology



Squamous cell carcinoma of the vulva (SQCV) is the fifth most common cancer in women and accounts for about 5% of all genital cancers in women. The PD-L1 signaling pathway is activated in many malignant neoplasms and its blockade enhances anti-cancer immunity. The aim of our study was to examine the protein expression of PD-L1 and PD-1 in squamous cell cancer of the vulva, its correlations with clinicopathologic features and prognostic value.


Patients with SQCV treated in one institution were used for the analyses. PD-L1 immunohistochemistry was performed on 4 µm-thick section of the respective FFPE tissue blocks using the 28-8 antibody. PD-L1 scoring was performed separately for tumour cells (TC) and tumour associated immune cells. DNA was extracted to determine HPV status. Kaplan–Meier estimates for disease-free-survival and overall-survival were calculated and compared by log-rank test.


PD-L1 expression in tumour cells could be observed in 32.9% of the patients. The expression of PD-L1 in peritumoural immune cells was confirmed in 91.4% of the patients. A significant correlation between PD-L1 expression in tumour cells and tumour stage was detected (p = 0.007). PD-L1 expression was independent from HPV status. Using the log-rank test we could not prove any significant differences in disease-free survival (p = 0.434) and overall survival (p = 0.858). Regression analysis showed that nodal status is a predictive factor of survival (p < 0.001).


The present study showed that a relevant amount of patients with squamous cell cancer of the vulva express PD-L1 in both, tumour cells and tumour-associated immune cells. Furthermore, the significant correlation of PD-L1 expression in TCs with tumour stage indicated the clinical impact of PD-L1 expression during tumour development. These data indicate that SQCV might be amenable to immune checkpoint-inhibition and constitute a rational for the future clinical trials.


Vulvar carcinoma PD-L1 PD-1 HPV 


Compliance with ethical standards

Conflict of interest

AMS, CA und BH are supported by Roche Pharma AG and Kölner Krebsstiftung. JP was supported by the Else Kröner-Fresenius Stiftung (EKFS-2014-A06 and 2016 Kolleg.19). AHS and RB have participated in advisory boards for BMS, MSD and F. Hoffmann-La Roche AG, pharmaceutical division. FT declares that she has no conflict of interest. BM declares that he has no conflict of interest. CP declares that she has no conflict of interest. LMS declares that he has no conflict of interest. PM declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Beller U, Quinn MA, Benedet JL, Creasman WT, Ngan HYS, Maisonneuve P, Pecorelli S, Odicino F, Heintz APM (2006) Carcinoma of the vulva. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet 95(Suppl 1):S7–S27. CrossRefGoogle Scholar
  2. Bertucci F, Finetti P, Colpaert C, Mamessier E, Parizel M, Dirix L, Viens P, Birnbaum D, van Laere S (2015) PDL1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy. Oncotarget 6:13506–13519CrossRefGoogle Scholar
  3. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GR, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639. CrossRefGoogle Scholar
  4. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. CrossRefGoogle Scholar
  5. Callea M, Albiges L, Gupta M, Cheng S-C, Genega EM, Fay AP, Song J, Carvo I, Bhatt RS, Atkins MB, Hodi FS, Choueiri TK, McDermott DF, Freeman GJ, Signoretti S (2015) Differential expression of PD-L1 between primary and metastatic sites in clear-cell renal cell carcinoma. Cancer Immunol Res 3:1158–1164. CrossRefGoogle Scholar
  6. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu T-E, Badin F, Ready N, Hiltermann TJN, Nair S, Juergens R, Peters S, Minenza E, Wrangle JM, Rodriguez-Abreu D, Borghaei H, Blumenschein GR, Villaruz LC, Havel L, Krejci J, Corral Jaime J, Chang H, Geese WJ, Bhagavatheeswaran P, Chen AC, Socinski MA (2017) First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 376:2415–2426. CrossRefGoogle Scholar
  7. Choschzick M, Gut A, Fink D (2018) PD-L1 receptor expression in vulvar carcinomas is HPV-independent. Virchows Arch. Google Scholar
  8. Del Pino M, Rodriguez-Carunchio L, Ordi J (2013) Pathways of vulvar intraepithelial neoplasia and squamous cell carcinoma. Histopathology 62:161–175. CrossRefGoogle Scholar
  9. Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369. CrossRefGoogle Scholar
  10. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800. CrossRefGoogle Scholar
  11. Fan CA, Reader J, Roque DM (2018) Review of immune therapies targeting ovarian cancer. Curr Treat Options Oncol 19:74. CrossRefGoogle Scholar
  12. Gargano JW, Wilkinson EJ, Unger ER, Steinau M, Watson M, Huang Y, Copeland G, Cozen W, Goodman MT, Hopenhayn C, Lynch CF, Hernandez BY, Peters ES, Saber MS, Lyu CW, Sands LA, Saraiya M (2012) Prevalence of human papillomavirus types in invasive vulvar cancers and vulvar intraepithelial neoplasia 3 in the United States before vaccine introduction. J Low Genit Tract Dis 16:471–479. CrossRefGoogle Scholar
  13. Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17:e542–e551. CrossRefGoogle Scholar
  14. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6:8. CrossRefGoogle Scholar
  15. Hampl M, Deckers-Figiel S, Hampl JA, Rein D, Bender HG (2008) New aspects of vulvar cancer: changes in localization and age of onset. Gynecol Oncol 109:340–345. CrossRefGoogle Scholar
  16. Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, Borghaei H, Ramalingam SS, Brahmer J, Reck M, O’Byrne KJ, Geese WJ, Green G, Chang H, Szustakowski J, Bhagavatheeswaran P, Healey D, Fu Y, Nathan F, Paz-Ares L (2018) Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 378:2093–2104. CrossRefGoogle Scholar
  17. Kim HS, Lee JY, Lim SH, Park K, Sun J-M, Ko YH, Baek C-H, Y-i Son, Jeong HS, Ahn YC, Lee M-Y, Hong M, Ahn M-J (2015) Association between PD-L1 and HPV status and the prognostic value of PD-L1 in oropharyngeal squamous cell carcinoma. Cancer Res Treat 48:527–536. CrossRefGoogle Scholar
  18. Kowalewska M, Radziszewski J, Goryca K, Bujko M, Oczko-Wojciechowska M, Jarzab M, Siedlecki JA, Bidzinski M (2012) Estimation of groin recurrence risk in patients with squamous cell vulvar carcinoma by the assessment of marker gene expression in the lymph nodes. BMC Cancer 12:223. CrossRefGoogle Scholar
  19. Kurman RJ (ed) (2014) WHO classification of tumours of female reproductive organs, vol 4, 4th edn. World Health Organization classification of tumours. IARC, LyonGoogle Scholar
  20. Mahner S, Prieske K, Grimm D, Trillsch F, Prieske S, von Amsberg G, Petersen C, Mueller V, Jaenicke F, Woelber L (2015) Systemic treatment of vulvar cancer. Expert Rev Anticancer Ther 15:629–637. CrossRefGoogle Scholar
  21. Malhotra J, Jabbour SK, Aisner J (2017) Current state of immunotherapy for non-small cell lung cancer. Transl Lung Cancer Res 6:196–211. CrossRefGoogle Scholar
  22. Mazanet MM, Hughes CCW (2002) B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J Immunol 169:3581–3588CrossRefGoogle Scholar
  23. Merkelbach-Bruse S, Jakob C, Tietze L, Schröder W, Rath W, Füzesi L (1999) Consensus polymerase chain reaction and enzyme-linked immunosorbent assay for human papillomavirus detection and typing in cervical specimens. Diagn Mol Pathol 8:32–38CrossRefGoogle Scholar
  24. Multhoff G, Molls M, Radons J (2012) Chronic inflammation in cancer development. Front Immunol. Google Scholar
  25. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, S-l Teng, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562. CrossRefGoogle Scholar
  26. Qing Y, Li Q, Ren T, Xia W, Peng Y, Liu G-L, Luo H, Yang Y-X, Dai X-Y, Zhou S-F, Wang D (2015) Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug Des Dev Ther 9:901–909. CrossRefGoogle Scholar
  27. Raju S, Joseph R, Sehgal S (2018) Review of checkpoint immunotherapy for the management of non-small cell lung cancer. Immunotargets Ther 7:63–75. CrossRefGoogle Scholar
  28. Raspagliesi F, Hanozet F, Ditto A, Solima E, Zanaboni F, Vecchione F, Kusamura S (2006) Clinical and pathological prognostic factors in squamous cell carcinoma of the vulva. Gynecol Oncol 102:333–337. CrossRefGoogle Scholar
  29. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. CrossRefGoogle Scholar
  30. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, Hollmann T, Schalper KA, Gainor JF, Shen R, Ni A, Arbour KC, Merghoub T, Wolchok J, Snyder A, Chaft JE, Kris MG, Rudin CM, Socci ND, Berger MF, Taylor BS, Zehir A, Solit DB, Arcila ME, Ladanyi M, Riely GJ, Schultz N, Hellmann MD (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36:633–641. CrossRefGoogle Scholar
  31. Roach C, Zhang N, Corigliano E, Jansson M, Toland G, Ponto G, Dolled-Filhart M, Emancipator K, Stanforth D, Kulangara K (2016) Development of a companion diagnostic PD-L1 immunohistochemistry assay for pembrolizumab therapy in non-small-cell lung cancer. Appl Immunohistochem Mol Morphol 24:392–397. CrossRefGoogle Scholar
  32. Saglam O, Conejo-Garcia J (2018) PD-1/PD-L1 immune checkpoint inhibitors in advanced cervical cancer. Integr Cancer Sci Ther. Google Scholar
  33. Schmidt LH, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch JH, Grünewald I, Marra A, Schultheis AM, Wardelmann E, Müller-Tidow C, Spieker T, Schliemann C, Berdel WE, Wiewrodt R, Hartmann W (2015) PD-1 and PD-L1 expression in NSCLC indicate a favorable prognosis in defined subgroups. PLoS One 10:e0136023. CrossRefGoogle Scholar
  34. Schultheis AM, Scheel AH, Ozretić L, George J, Thomas RK, Hagemann T, Zander T, Wolf J, Buettner R (2015) PD-L1 expression in small cell neuroendocrine carcinomas. Eur J Cancer 51:421–426. CrossRefGoogle Scholar
  35. Sznurkowski JJ, Żawrocki A, Sznurkowska K, Pęksa R, Biernat W (2017) PD-L1 expression on immune cells is a favorable prognostic factor for vulvar squamous cell carcinoma patients. Oncotarget 8:89903–89912. Google Scholar
  36. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. CrossRefGoogle Scholar
  37. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD, Leming PD, Lipson EJ, Puzanov I, Smith DC, Taube JM, Wigginton JM, Kollia GD, Gupta A, Pardoll DM, Sosman JA, Hodi FS (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–1030. CrossRefGoogle Scholar
  38. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287. CrossRefGoogle Scholar
  39. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon R-A, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fabinshy Thangarajah
    • 1
    Email author
  • Bernd Morgenstern
    • 1
  • Caroline Pahmeyer
    • 1
  • Lars Mortimer Schiffmann
    • 2
  • Julian Puppe
    • 1
  • Peter Mallmann
    • 1
  • Stefanie Hamacher
    • 3
  • Reinhard Buettner
    • 4
  • Christina Alidousty
    • 4
  • Barbara Holz
    • 4
  • Andreas H. Scheel
    • 4
  • Anne Maria Schultheis
    • 4
    Email author
  1. 1.Department of Obstetrics and Gynaecology, Medical Faculty, University Hospital CologneUniversity of CologneCologneGermany
  2. 2.Department of General, Visceral and Cancer SurgeryUniversity of CologneCologneGermany
  3. 3.Institute of Medical Statistics and Computational BiologyUniversity Hospital CologneCologneGermany
  4. 4.Department of Pathology, University Hospital of CologneInstitute of PathologyCologneGermany

Personalised recommendations