Advertisement

Results of the European survey on the assessment of deep molecular response in chronic phase CML patients during tyrosine kinase inhibitor therapy (EUREKA registry)

  • Susanne Möbius
  • Thomas Schenk
  • Danny Himsel
  • Jacqueline Maier
  • Georg-Nikolaus Franke
  • Susanne Saussele
  • Christiane Pott
  • Hajnalka Andrikovics
  • Nora Meggyesi
  • Katerina Machova-Polakova
  • Hana Zizkova
  • Tomáš Jurcek
  • Semir Mesanovic
  • Renata Zadro
  • Enrico Gottardi
  • Jens Haenig
  • Peter Schuld
  • Nicholas C. P. Cross
  • Andreas Hochhaus
  • Thomas ErnstEmail author
Original Article – Clinical Oncology
  • 96 Downloads

Abstract

Purpose

The advent of tyrosine kinase inhibitor (TKI) therapies has revolutionized the treatment of chronic myeloid leukemia (CML). The European LeukemiaNet (ELN) recommends quantification of BCR–ABL1 transcripts by real-time quantitative PCR every 3 months during TKI treatment. Since a proportion of patients in deep molecular response (DMR: MR4, MR4.5, MR5) maintain remission after treatment stop, assessment of DMR is crucial. However, systematically collected molecular data, monitored with sensitive standardized assays, are not available outside clinical trials.

Methods

Data were collected on the standardized assessment of molecular response in the context of real-life practice. BCR–ABL1 transcript levels after > 2 years of TKI therapy were evaluated for DMR by local laboratories as well as standardized EUTOS laboratories. Since standardized molecular monitoring is a prerequisite for treatment discontinuation, central surveillance of the performance of the participating laboratories was carried out.

Results

Between 2014 and 2017, 3377 peripheral blood samples from 1117 CML patients were shipped to 11 standardized reference laboratories in six European countries. BCR–ABL1 transcript types were b3a2 (41.63%), b2a2 (29.99%), b2a2/b3a2 (3.58%) and atypical (0.54%). For 23.72% of the patients, the initial transcript type had not been reported. Response levels (EUTOS laboratory) were: no MMR, n = 197 (6.51%); MMR, n = 496 (16.40%); MR4, n = 685 (22.64%); MR4.5, n = 937 (30.98%); MR5, n = 710 (23.47%). With a Cohen’s kappa coefficient of 0.708, a substantial agreement between EUTOS-certified and local laboratories was shown.

Conclusions

Multicenter DMR assessment is feasible in the context of real-life clinical practice in Europe. Information on the BCR–ABL1 transcript type at diagnosis is crucial to accurately monitor patients’ molecular response during or after TKI therapy.

Keywords

Chronic myeloid leukemia CML BCR–ABL Molecular monitoring Deep molecular remission Treatment-free remission TFR Standardization Eureka 

Notes

Funding

This study was funded by Novartis Oncology within the European Treatment and Outcome Study (EUTOS).

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

All the procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study has been approved by the ethics committee of the Jena University Hospital, Jena, Germany (No. 3944-12/12).

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Baccarani M et al (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia. Blood 122:872–884.  https://doi.org/10.1182/blood-2013-05-501569 CrossRefGoogle Scholar
  2. Baccarani M, Castagnetti F, Gugliotta G, Rosti G (2015) A review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol 94(Suppl 2):S141–S147.  https://doi.org/10.1007/s00277-015-2322-2 CrossRefGoogle Scholar
  3. Branford S et al (2006) Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia 20:1925–1930.  https://doi.org/10.1038/sj.leu.2404388 CrossRefGoogle Scholar
  4. Branford S et al (2008) Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood 112:3330–3338.  https://doi.org/10.1182/blood-2008-04-150680 CrossRefGoogle Scholar
  5. Cross NC, White HE, Muller MC, Saglio G, Hochhaus A (2012) Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia 26:2172–2175.  https://doi.org/10.1038/leu.2012.104 CrossRefGoogle Scholar
  6. Cross NC, Hochhaus A, Muller MC (2015a) Molecular monitoring of chronic myeloid leukemia: principles and interlaboratory standardization. Ann Hematol 94(Suppl 2):S219–S225.  https://doi.org/10.1007/s00277-015-2315-1 CrossRefGoogle Scholar
  7. Cross NC et al (2015b) Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia 29:999–1003.  https://doi.org/10.1038/leu.2015.29 CrossRefGoogle Scholar
  8. Cross NC et al (2016) Development and evaluation of a secondary reference panel for BCR-ABL1 quantification on the International Scale. Leukemia 30:1844–1852.  https://doi.org/10.1038/leu.2016.90 CrossRefGoogle Scholar
  9. Cross NCP et al (2018) Consensus on BCR-ABL1 reporting in chronic myeloid leukaemia in the UK. Br J Haematol 182:777–788.  https://doi.org/10.1111/bjh.15542 CrossRefGoogle Scholar
  10. Foroni L et al (2011) Guidelines for the measurement of BCR-ABL1 transcripts in chronic myeloid leukaemia. Br J Haematol 153:179–190.  https://doi.org/10.1111/j.1365-2141.2011.08603.x CrossRefGoogle Scholar
  11. Gabert J et al (2003) Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia 17:2318–2357.  https://doi.org/10.1038/sj.leu.2403135 CrossRefGoogle Scholar
  12. Gambacorti-Passerini C et al (2011) Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst 103:553–561.  https://doi.org/10.1093/jnci/djr060 CrossRefGoogle Scholar
  13. Hehlmann R et al (2014) Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol 32:415–423.  https://doi.org/10.1200/jco.2013.49.9020 CrossRefGoogle Scholar
  14. Hochhaus A et al (2009) Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 23:1054–1061.  https://doi.org/10.1038/leu.2009.38 CrossRefGoogle Scholar
  15. Hochhaus A et al (2017) Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med 376:917–927.  https://doi.org/10.1056/NEJMoa1609324 CrossRefGoogle Scholar
  16. Huang X, Cortes J, Kantarjian H (2012) Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Cancer 118:3123–3127.  https://doi.org/10.1002/cncr.26679 CrossRefGoogle Scholar
  17. Hughes TP et al (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. New Engl J Med 349:1423–1432.  https://doi.org/10.1056/NEJMoa030513 CrossRefGoogle Scholar
  18. Hughes T et al (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108:28–37.  https://doi.org/10.1182/blood-2006-01-0092 CrossRefGoogle Scholar
  19. Jabbour E et al (2014) Early response with dasatinib or imatinib in chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASISION). Blood 123:494–500.  https://doi.org/10.1182/blood-2013-06-511592 CrossRefGoogle Scholar
  20. Kalmanti L et al (2015) Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study IV. Leukemia 29:1123–1132.  https://doi.org/10.1038/leu.2015.36 CrossRefGoogle Scholar
  21. Kantarjian H et al (2010) Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. New Engl J Med 362:2260–2270.  https://doi.org/10.1056/NEJMoa1002315 CrossRefGoogle Scholar
  22. Kantarjian HM et al (2011) Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol 12:841–851.  https://doi.org/10.1016/s1470-2045(11)70201-7 CrossRefGoogle Scholar
  23. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefGoogle Scholar
  24. Mahon FX (2016) Discontinuation of TKI therapy and ‘functional’ cure for CML best practice research. Clin Haematol 29:308–313.  https://doi.org/10.1016/j.beha.2016.10.014 Google Scholar
  25. Mahon FX et al (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11:1029–1035.  https://doi.org/10.1016/s1470-2045(10)70233-3 CrossRefGoogle Scholar
  26. Muller MC et al (2009) Harmonization of molecular monitoring of CML therapy in Europe. Leukemia 23:1957–1963.  https://doi.org/10.1038/leu.2009.168 CrossRefGoogle Scholar
  27. Ross DM et al (2013) Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 122:515–522.  https://doi.org/10.1182/blood-2013-02-483750 CrossRefGoogle Scholar
  28. Saglio G et al (2010) Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 362:2251–2259.  https://doi.org/10.1056/NEJMoa0912614 CrossRefGoogle Scholar
  29. Saussele S, Richter J, Hochhaus A, Mahon FX (2016) The concept of treatment-free remission in chronic myeloid leukemia. Leukemia 30:1638–1647.  https://doi.org/10.1038/leu.2016.115 CrossRefGoogle Scholar
  30. Saussele S et al (2018) Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol 19:747–757.  https://doi.org/10.1016/s1470-2045(18)30192-x CrossRefGoogle Scholar
  31. White H et al (2015) A certified plasmid reference material for the standardisation of BCR-ABL1 mRNA quantification by real-time quantitative PCR. Leukemia 29:369–376.  https://doi.org/10.1038/leu.2014.217 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Susanne Möbius
    • 1
  • Thomas Schenk
    • 1
  • Danny Himsel
    • 1
  • Jacqueline Maier
    • 2
  • Georg-Nikolaus Franke
    • 2
  • Susanne Saussele
    • 3
  • Christiane Pott
    • 4
  • Hajnalka Andrikovics
    • 5
    • 6
  • Nora Meggyesi
    • 5
    • 6
  • Katerina Machova-Polakova
    • 7
  • Hana Zizkova
    • 7
  • Tomáš Jurcek
    • 8
    • 9
  • Semir Mesanovic
    • 10
  • Renata Zadro
    • 11
  • Enrico Gottardi
    • 12
  • Jens Haenig
    • 13
  • Peter Schuld
    • 13
  • Nicholas C. P. Cross
    • 14
    • 15
  • Andreas Hochhaus
    • 1
  • Thomas Ernst
    • 1
    Email author
  1. 1.Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum JenaJenaGermany
  2. 2.Abteilung für Hämatologie und internistische Onkologie, Universität LeipzigLeipzigGermany
  3. 3.III. Medizinische Klinik, Universitätsmedizin Mannheim, Universität HeidelbergMannheimGermany
  4. 4.Second Medical DepartmentUniversity Hospital Schleswig–HolsteinKielGermany
  5. 5.National Blood ServiceBudapestHungary
  6. 6.Central Hospital of Southern PestBudapestHungary
  7. 7.Department of Molecular GeneticsInstitute of Hematology and Blood TransfusionPragueCzech Republic
  8. 8.Department of Internal Medicine, Hematology and OncologyUniversity Hospital BrnoBrnoCzech Republic
  9. 9.Faculty of MedicineMasaryk University BrnoBrnoCzech Republic
  10. 10.Pathology DepartmentUniversity Clinical Center TuzlaTuzlaBosnia and Herzegovina
  11. 11.University Hospital Center ZagrebUniversity of Zagreb, Faculty of Pharmacy and BiochemistryZagrebCroatia
  12. 12.Division of Internal Medicine and HematologyUniversity of TurinOrbassanoItaly
  13. 13.Novartis Oncology, Global Medical AffairsBaselSwitzerland
  14. 14.Wessex Regional Genetics LaboratorySalisbury NHS Foundation TrustSalisburyUK
  15. 15.Faculty of MedicineUniversity of SouthamptonSouthamptonUK

Personalised recommendations