Skip to main content

Advertisement

Log in

Valproic acid (VPA) inhibits the epithelial–mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purposes

The epithelial–mesenchymal transition (EMT) plays an important role in cancer metastasis. Previous studies have reported that valproic acid (VPA) suppresses prostate carcinoma (PCa) cell metastasis and down-regulates SMAD4 protein levels, which is the key molecule in TGF-β-induced EMT. However, the correlation between VPA and the EMT in PCa remains uncertain.

Methods

Markers of the EMT in PCa cells and xenografts were molecularly assessed after VPA treatment. The expression and mono-ubiquitination of SMAD4 were also analyzed. After transfection with plasmids that express SMAD4 or short hairpin RNA for SMAD4 down-regulation, markers of EMT were examined to confirm whether VPA inhibits the EMT of PCa cells through the suppression of SMAD4.

Results

VPA induced the increase in E-cadherin (p < 0.05), and the decrease in N-cadherin (p < 0.05) and Vimentin (p < 0.05), in PCa cells and xenografts. SMAD4 mRNA and protein levels were repressed by VPA (p < 0.05), whereas the level of mono-ubiquitinated SMAD4 was increased (p < 0.05). SMAD4 knockdown significantly increased E-cadherin expression in PC3 cells, but SMAD4 over-expression abolished the VPA-mediated EMT-inhibitory effect.

Conclusions

VPA inhibits the EMT in PCa cells via the inhibition of SMAD4 expression and the mono-ubiquitination of SMAD4. VPA could serve as a promising agent in PCa treatment, with new strategies based on its diverse effects on posttranscriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abend A, Kehat I (2015) Histone deacetylases as therapeutic targets—from cancer to cardiac disease. Pharmacol Ther 147C:55–62

    Article  CAS  Google Scholar 

  • Axelrod H, Pienta KJ (2014) Axl as a mediator of cellular growth and survival. Oncotarget 5(19):8188–8852

    Article  Google Scholar 

  • Bruzzese F, Leone A, Rocco M, Carbone C, Piro G, Caraglia M, Di Gennaro E, Budillon A (2011) HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT. J Cell Physiol 226(9):2378–2390

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Hsu WH, Wang CC, Chou CH, Kuo MY, Lin BR, Chen ST, Tai SK, Kuo ML, Yang MH (2013) Connective tissue growth factor activates pluripotency genes and mesenchymal–epithelial transition in head and neck cancer cells. Cancer Res 73(13):4147–4157

    Article  PubMed  CAS  Google Scholar 

  • Chiu CT, Wang Z, Hunsberger JG, Chuang DM (2013) Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 65(1):105–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi JY, Kim JH, Jo SA (2014) Acetylation regulates the stability of glutamate carboxypeptidase II protein in human astrocytes. Biochemical and biophysical research communications 450(1):372–377

    Article  PubMed  CAS  Google Scholar 

  • Cincarova L, Zdrahal Z, Fajkus J (2013) New perspectives of valproic acid in clinical practice. Expert Opin Investig Drugs 22:1535–1547

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J, Perry SR, Labrot ES, Wu X, Lis R, Hoshida Y, Hiller D, Hu B, Jiang S, Zheng H, Stegh AH, Scott KL, Signoretti S, Bardeesy N, Wang YA, Hill DE, Golub TR, Stampfer MJ, Wong WH, Loda M, Mucci L, Chin L, DePinho RA (2011) SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470(7333):269–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drabsch Y, ten Dijke P (2012) TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31(3–4):553–568

    Article  PubMed  CAS  Google Scholar 

  • Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell 136(1):123–135

    Article  PubMed  CAS  Google Scholar 

  • Dupont S, Inui M, Newfeld SJ (2012) Regulation of TGF-beta signal transduction by mono- and deubiquitylation of Smads. FEBS Lett 586(14):1913–1920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13(9):673–691

    Article  PubMed  CAS  Google Scholar 

  • Fattet L, Ay AS, Bonneau B, Jallades L, Mikaelian I, Treilleux I, Gillet G, Hesling C, Rimokh R (2013) TIF1gamma requires sumoylation to exert its repressive activity on TGFbeta signaling. J Cell Sci 126(Pt 16):3713–3723

    Article  PubMed  CAS  Google Scholar 

  • Fuxe J, Vincent T, Herreros AG (2010) Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle 9(12):2363–2374

    Article  PubMed  CAS  Google Scholar 

  • Han RF, Li K, Yang ZS, Chen ZG, Yang WC (2014) Trichostatin A induces mesenchymal-like morphological change and gene expression but inhibits migration and colony formation in human cancer cells. Mol Med Rep 10(6):3211–3216

    PubMed  CAS  Google Scholar 

  • He Y, Huang C, Sun X, Long XR, Lv XW, Li J (2012) MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signal 24(10):1923–1930

    Article  PubMed  CAS  Google Scholar 

  • Hesling C, Fattet L, Teyre G, Jury D, Gonzalo P, Lopez J, Vanbelle C, Morel AP, Gillet G, Mikaelian I, Rimokh R (2011) Antagonistic regulation of EMT by TIF1gamma and Smad4 in mammary epithelial cells. EMBO Rep 12(7):665–672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hudak L, Tezeeh P, Wedel S, Makarevic J, Juengel E, Tsaur I, Bartsch G, Wiesner C, Haferkamp A, Blaheta RA (2012) Low dosed interferon alpha augments the anti-tumor potential of histone deacetylase inhibition on prostate cancer cell growth and invasion. Prostate 72(16):1719–1735

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Zheng Y, Huang Z, Wang M, Zhang Y, Wang Z, Jin X, Xia Q (2014) Role of SMAD4 in the mechanism of valproic acid’s inhibitory effect on prostate cancer cell invasiveness. Int Urol Nephrol 46(5):941–946

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Investig 119(6):1420–1428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khanim FL, Bradbury CA, Arrazi J, Hayden RE, Rye A, Basu S, MacWhannell A, Sawers A, Griffiths M, Cook M, Freeman S, Nightingale KP, Grimwade D, Falciani F, Turner BM, Bunce CM, Craddock C (2009) Elevated FOSB-expression; a potential marker of valproate sensitivity in AML. Br J Haematol 144(3):332–341

    Article  PubMed  CAS  Google Scholar 

  • Kortenhorst MS, Isharwal S, van Diest PJ, Chowdhury WH, Marlow C, Carducci MA et al (2009) Valproic acid causes dose- and time-dependent changes in nuclear structure in prostate cancer cells in vitro and in vivo. Mol Cancer Ther 8(4):802–808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kotiyal S, Bhattacharya S (2014) Breast cancer stem cells, EMT and therapeutic targets. Biochem Biophys Res Commun 453(1):112–116

    Article  PubMed  CAS  Google Scholar 

  • Kwon KJ, Kim JN, Kim MK, Kim SY, Cho KS, Jeon SJ, Kim HY, Ryu JH, Han SY, Cheong JH, Ignarro LJ, Han SH, Shin CY (2013) Neuroprotective effects of valproic acid against hemin toxicity: possible involvement of the down-regulation of heme oxygenase-1 by regulating ubiquitin–proteasomal pathway. Neurochem Int 62(3):240–250

    Article  PubMed  CAS  Google Scholar 

  • Li GF, Qian TL, Li GS, Yang CX, Qin M, Huang J, Sun M, Han YQ (2012) Sodium valproate inhibits MDA-MB-231 breast cancer cell migration by upregulating NM23H1 expression. Genet Mol Res 11(1):77–86

    Article  PubMed  CAS  Google Scholar 

  • Li P, Yang R, Gao WQ (2014) Contributions of epithelial–mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Mol Cancer 13:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin SK, Kamelgarn M, Kyprianou N (2014) Cytoskeleton targeting value in prostate cancer treatment. Am J Clin Exp Urol 2(1):15–26

    PubMed  PubMed Central  Google Scholar 

  • Omer D, Harari-Steinberg O, Buzhor E, Metsuyanim S, Pleniceanu O, Zundelevich A, Gal-Yam EN, Dekel B (2013) Chromatin-modifying agents reactivate embryonic renal stem/progenitor genes in human adult kidney epithelial cells but abrogate dedifferentiation and stemness. Cell Reprogram 15(4):281–292

    PubMed  PubMed Central  CAS  Google Scholar 

  • Roca H, Hernandez J, Weidner S, McEachin RC, Fuller D, Sud S et al (2013) Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer. PLoS ONE 8(10):e76773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saylor PJ, Armstrong AJ, Fizazi K, Freedland S, Saad F, Smith MR, Tombal B, Pienta K (2013) New and emerging therapies for bone metastases in genitourinary cancers. Eur Urol 63(2):309–320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan Z, Feng-Nian R, Jie G, Ting Z (2012) Effects of valproic acid on proliferation, apoptosis, angiogenesis and metastasis of ovarian cancer in vitro and in vivo. Asian Pac J Cancer Prev 13(8):3977–3982

    Article  PubMed  Google Scholar 

  • Shimmi O, Newfeld SJ (2013) New insights into extracellular and post-translational regulation of TGF-beta family signalling pathways. J Biochem 154(1):11–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29

    Article  PubMed  Google Scholar 

  • Slingerland M, Guchelaar HJ, Gelderblom H (2014) Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors. Anticancer Drugs 25(2):140–149

    Article  PubMed  CAS  Google Scholar 

  • Srivastava RK, Kurzrock R, Shankar S (2010) MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial–mesenchymal transition in vivo. Mol Cancer Ther 9(12):3254–3266

    Article  PubMed  CAS  Google Scholar 

  • Takai N, Desmond JC, Kumagai T, Gui D, Said JW, Whittaker S, Miyakawa I, Phillip Koeffler H (2004) Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res 10:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70(14):5649–5669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai C, Leslie JS, Franko-Tobin LG, Prasnal MC, Yang T, Mackey LV, Fuselier JA, Coy DH, Liu M, Yu C, Sun L (2013) Valproic acid suppresses cervical cancer tumor progression possibly via activating Notch1 signaling and enhances receptor-targeted cancer chemotherapeutic via activating somatostatin receptor type II. Arch Gynecol Obstet 288(2):393–400

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhou BP (2011) Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer 30(9):603–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wedel S, Hudak L, Seibel JM, Makarevic J, Juengel E, Tsaur I, Wiesner C, Haferkamp A, Blaheta RA (2011) Impact of combined HDAC and mTOR inhibition on adhesion, migration and invasion of prostate cancer cells. Clin Exp Metastasis 28(5):479–491

    Article  PubMed  CAS  Google Scholar 

  • Xie F, Zhang Z, van Dam H, Zhang L, Zhou F (2014) Regulation of TGF-beta superfamily signaling by SMAD mono-ubiquitination. Cells 3(4):981–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao D, Dai C, Peng S (2011) Mechanism of the mesenchymal–epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res 9(12):1608–1620

    Article  PubMed  CAS  Google Scholar 

  • Zhu ML, Kyprianou N (2010) Role of androgens and the androgen receptor in epithelial–mesenchymal transition and invasion of prostate cancer cells. FASEB J 24(3):769–777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Xia.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, X., Lu, G., Yuan, C. et al. Valproic acid (VPA) inhibits the epithelial–mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4. J Cancer Res Clin Oncol 142, 177–185 (2016). https://doi.org/10.1007/s00432-015-2020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-2020-4

Keywords

Navigation