Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Identification of GLIPR1 tumor suppressor as methylation-silenced gene in acute myeloid leukemia by microarray analysis

Abstract

Purpose

To identify methylation-silenced genes in acute myeloid leukemia (AML).

Methods

Microarray analyses were performed in AML cell line HL-60 cells exposed to the demethylating agent 5-aza-2dC. The methylation status and expression of glioma pathogenesis-related protein 1 (GLIPR1), one of highly induced genes by demethylation, were further detected in six hematopoietic malignancy cell lines and 260 bone marrow samples from leukemia patients and nonmalignant diseases as control, as well as pre-treated and post-treated bone marrow samples from 24 complete remission AML patients received chemotherapy using MS-PCR, bisulfite DNA sequencing, RT-PCR, and Western blotting.

Results

One hundred and nine genes were significantly induced by demethylation in HL-60 cells, 12 genes of which were confirmed by RT-PCR. GLIPR1, a tumor suppressor gene, was frequently methylation-silenced in AML cell lines and AML patients, but not in the other hematopoietic malignancy cell lines and patients. The frequencies of methylation-silenced GLIPR1 in the pre-treatment were significantly higher than those in the post-treatment in complete remission AML patients.

Conclusion

We identify 109 genes induced by demethylation in HL-60 cells, and demonstrate that GLIPR1 is a methylation-silenced gene in the AML patients, and may serve as a marker for monitoring disease activity during therapy in the AML patients. The data provide the important information for studying the pathogenesis of AML and discovering the target genes of methylating agents.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agrawal S, Hofmann WK, Tidow N, Ehrich M, van den Boom D, Koschmieder S et al (2007) The C/EBP{delta} tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood 109:3895–3905

  2. Chim CS, Liang R, Kwong YL (2002) Hypermethylation of gene promoters in hematological neoplasia. Hematol Oncol 20:167–176

  3. Claus R, Almstedt M, Lübbert M (2005) Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents. Semin Oncol 32:511–520

  4. Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22:4632–4642

  5. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

  6. Gingras MC, Margolin JF (2000) Differential expression of multiple unexpected genes during U937 cell and macrophage differentiation detected by suppressive subtractive hybridization. Exp Hematol 28:65–76

  7. Griffiths EA, Gore SD (2008) DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 45:23–30

  8. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

  9. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB (1997) Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 57:837–841

  10. Issa JP, Baylin SB, Herman JG (1997) DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 11:S7–S11

  11. Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S et al (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103:1635–1640

  12. Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

  13. Katzenellenbogen RA, Baylin SB, Herman JG (1999) Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 93:4347–4353

  14. Li L, Abdel Fattah E, Cao G, Ren C, Yang G, Goltsov AA et al (2008) Glioma pathogenesis-related protein 1 exerts tumor suppressor activities through proapoptotic reactive oxygen species-c-Jun-NH2 kinase signaling. Cancer Res 68:434–443

  15. Liang T, Tan T, Xiao Y, Yi H, Li C, Peng F et al (2009) Methylation and expression of glioma pathogenesis-related protein 1 gene in acute myeloid leukemia. Zhong Nan Da Xue Xue Bao Yi Xue Ban 34:388–394

  16. Melki JR, Vincent PC, Brown RD, Clark SJ (2000) Hypermethylation of E-cadherin in leukemia. Blood 95:3208–3213

  17. Momparler RL (2005) Epigenetic therapy of cancer with 5-aza-2′-deoxycytidine (decitabine). Semin Oncol 32:443–451

  18. Murphy EV, Zhang Y, Zhu W, Biggs J (1995) The human glioma pathogenesis-related protein is structurally related to plant pathogenesis-related proteins and its gene is expressed specifically in brain tumors. Gene 159:131–135

  19. Naruishi K, Timme TL, Kusaka N, Fujita T, Yang G, Goltsov A et al (2006) Adenoviral vector-mediated RTVP-1 gene-modified tumor cell based vaccine suppresses the development of experimental prostate cancer. Cancer Gene Ther 13:658–663

  20. Ng MH, Chung YF, Lo KW, Wickham NW, Lee JC, Huang DP (1997) Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood 89:2500–2506

  21. Plimack ER, Kantarjian HM, Issa JP (2007) Decitabine and its role in the treatment of hematopoietic malignancies. Leuk Lymphoma 48:1472–1481

  22. Ren C, Ren CH, Li L, Goltsov AA, Thompson TC (2002) mRTVP-1, a novel p53 target gene with proapoptotic activities. Mol Cell Biol 22:3345–3357

  23. Ren C, Li L, Yang G, Timme TL, Goltsov A, Ren C et al (2004) RTVP-1, a tumor suppressor inactivated by methylation in prostate cancer. Cancer Res 64:969–976

  24. Rich T, Chen P, Furman F, Huynh N, Israel MA (1996) RTVP-1, a novel human gene with sequence similarity to genes of diverse species, is expressed in tumor cell lines of glial but not neuronal origin. Gene 180:125–130

  25. Rüter B, Wijermans PW, Lübbert M (2004) DNA methylation as a therapeutic target in hematologic disorders: recent results in older patients with myelodysplasia and acute myeloid leukemia. Int J Hematol 80:128–135

  26. Satoh T, Timme TL, Saika T, Ebara S, Yang G, Wang J et al (2003) Adenoviral vector mediated mRTVP-1 gene therapy for prostate cancer. Hum Gene Ther 14:91–101

  27. Szyperski T, Fernandez C, Mumenthaler C, Wuthrich K (1998) Structure comparison of human glioma pathogenesis-related protein GliPR and the plant pathogenesis-related protein P14a indicates a functional link between the human immune system and a plant defense system. Proc Natl Acad Sci USA 95:2262–2266

  28. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP (2001) Methylation profiling in acute myeloid leukemia. Blood 97:2823–2829

  29. Weller M, Malipiero U, Aguzzi A, Reed JC, Fontana A (1995) Protooncogene bcl-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation. J Clin Invest 95:2633–2643

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (30973290), Outstanding Scholars of New Era from Ministry of Education of China (2002-48), Lotus Scholars Program of Hunan Province, China (2007-362), Key research program from Science and Technology Committee of Hunan Province, China (2010FJ2009), and Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China.

Conflict of interest

No conflicts of interest were declared.

Author information

Correspondence to Zhi-Qiang Xiao.

Additional information

Yan-Hua Xiao, Xin-Hui Li and Tan Tan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 103 kb)

Supplementary material 2 (DOC 201 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiao, Y., Li, X., Tan, T. et al. Identification of GLIPR1 tumor suppressor as methylation-silenced gene in acute myeloid leukemia by microarray analysis. J Cancer Res Clin Oncol 137, 1831 (2011). https://doi.org/10.1007/s00432-011-1065-2

Download citation

Keywords

  • Acute myeloid leukemia
  • GLIPR1
  • Tumor suppressor gene
  • Methylation-silenced genes
  • Microarray