Advertisement

RUNX3 expression is lost in glioma and its restoration causes drastic suppression of tumor invasion and migration

  • Peng-Jin Mei
  • Jin Bai
  • Hui Liu
  • Chen Li
  • Yong-Ping Wu
  • Zheng-Quan YuEmail author
  • Jun-Nian ZhengEmail author
Original Paper

Abstract

Purpose

The aim of this study is to investigate whether the expression of RUNX3 is related to the development of glioma, and the role of RUNX3 in glioma cells growth, invasion and migration.

Methods

We analyzed the protein expression of RUNX3 by immunohistochemistry in 188 glioma tissues, 8 normal brain tissues and 8 tumor adjacent normal brain tissues using tissue microarray technique. We studied whether RUNX3 restoration can suppress glioma cells growth, invasion and migration by performing MTT cell proliferation assay, matrigel cell invasion assay, wound-healing assay and migration assay. We also detected MMP-2 protein expression and enzyme activity by western blot analysis and gelatin zymography.

Results

We found that RUNX3 expression was decreased in benign tumor and malignant tumor compared with tumor adjacent normal brain tissue (P < 0.01 and P < 0.05, respectively). We did not find any correlation between RUNX3 expression and clinicopathological parameters. In addition, we demonstrated that re-expression of RUNX3 in glioma cells resulted in significantly inhibited cell invasion and migration abilities. This reduced cell invasion and migration abilities were due to MMP-2 protein expression and enzyme activity suppression after RUNX3 restoration.

Conclusions

Our data indicated that RUNX3 expression is significantly decreased in human glioma, and targeting of the RUNX3 pathway may constitute a potential treatment modality for glioma.

Keywords

RUNX3 Glioma Tissue microarray Invasion Migration 

Notes

Acknowledgments

This project is supported by grants from the National Natural Science Foundation of China (No. 30972976, 81071854), the Program for New Century Excellent Talents in University (NCET-08-0700) and Xuzhou Medical College (No. 2010KJZ03).

Conflict of interest

We declare that we have no conflict of interest.

References

  1. Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS, Rognum TO, Skotheim RI, Thiis-Evensen E, Lothe RA (2008) Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer 7:94. doi: 10.1186/1476-4598-7-94 PubMedCrossRefGoogle Scholar
  2. Badiga AV, Chetty C, Kesanakurti D, Are D, Gujrati M, Klopfenstein JD, Dinh DH, Rao JS (2011) MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS One 6(6):e20614. doi: 10.1371/journal.pone.0020614 PubMedGoogle Scholar
  3. Bae SC, Takahashi E, Zhang YW, Ogawa E, Shigesada K, Namba Y, Satake M, Ito Y (1995) Cloning, mapping and expression of PEBP2 alpha C, a third gene encoding the mammalian runt domain. Gene 159(2):245–248PubMedCrossRefGoogle Scholar
  4. Bai J, Zhang J, Wu J, Shen L, Zeng J, Ding J, Wu Y, Gong Z, Li A, Xu S, Zhou J, Li G (2010) JWA regulates melanoma metastasis by integrin alpha V beta 3 signaling. Oncogene 29(8):1227–1237. doi: 10.1038/onc.2009.408 PubMedCrossRefGoogle Scholar
  5. Barcellos-Hoff MH, Newcomb EW, Zagzag D, Narayana A (2009) Therapeutic targets in malignant glioblastoma microenvironment. Semin Radiat Oncol 19(3):163–170. doi: 10.1016/j.semradonc.2009.02.004 PubMedCrossRefGoogle Scholar
  6. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85(5):683–693PubMedCrossRefGoogle Scholar
  7. Cha HJ, Bae SK, Lee HY, Lee OH, Sato H, Seiki M, Park BC, Kim KW (1996) Anti-invasive activity of ursolic acid correlates with the reduced expression of matrix metalloproteinase-9 (MMP-9) in HT1080 human fibrosarcoma cells. Cancer Res 56(10):2281–2284PubMedGoogle Scholar
  8. Eng C, Herman JG, Baylin SB (2000) A bird’s eye view of global methylation. Nat Genet 24(2):101–102. doi: 10.1038/72730 PubMedCrossRefGoogle Scholar
  9. Guan H, Cai J, Zhang N, Wu J, Yuan J, Li J, Li M (2011) Sp1 is upregulated in human glioma, promotes MMP-2-mediated cell invasion and predicts poor clinical outcome. Int J Cancer. doi: 10.1002/ijc.26049
  10. Ichimura K, Vogazianou AP, Liu L, Pearson DM, Backlund LM, Plant K, Baird K, Langford CF, Gregory SG, Collins VP (2008) 1p36 is a preferential target of chromosome 1 deletions in astrocytic tumours and homozygously deleted in a subset of glioblastomas. Oncogene 27(14):2097–2108. doi: 10.1038/sj.onc.1210848 PubMedCrossRefGoogle Scholar
  11. Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS, Lee CW, Voon DC, Koo JK, Wang H, Fukamachi H, Ito Y (2008) RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14(3):226–237. doi: 10.1016/j.ccr.2008.08.004 PubMedCrossRefGoogle Scholar
  12. Javed A, Barnes GL, Pratap J, Antkowiak T, Gerstenfeld LC, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2005) Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc Natl Acad Sci USA 102(5):1454–1459. doi: 10.1073/pnas.0409121102 PubMedCrossRefGoogle Scholar
  13. Kim TY, Lee HJ, Hwang KS, Lee M, Kim JW, Bang YJ, Kang GH (2004) Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma. Lab Invest 84(4):479–484. doi: 10.1038/labinvest.37000603700060 PubMedCrossRefGoogle Scholar
  14. Kim WJ, Kim EJ, Jeong P, Quan C, Kim J, Li QL, Yang JO, Ito Y, Bae SC (2005) RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res 65(20):9347–9354. doi: 10.1158/0008-5472.CAN-05-1647 PubMedCrossRefGoogle Scholar
  15. Ku JL, Kang SB, Shin YK, Kang HC, Hong SH, Kim IJ, Shin JH, Han IO, Park JG (2004) Promoter hypermethylation downregulates RUNX3 gene expression in colorectal cancer cell lines. Oncogene 23(40):6736–6742. doi: 10.1038/sj.onc.12077311207731 PubMedCrossRefGoogle Scholar
  16. Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M, Putti TC, Loh M, Ko TK, Huang C, Bhalla KN, Zhu T, Ito Y, Sukumar S (2006) RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res 66(13):6512–6520. doi: 10.1158/0008-5472.CAN-06-0369 PubMedCrossRefGoogle Scholar
  17. Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae SC, Ito Y (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109(1):113–124PubMedCrossRefGoogle Scholar
  18. Lund AH, van Lohuizen M (2002) RUNX: a trilogy of cancer genes. Cancer Cell 1(3):213–215PubMedCrossRefGoogle Scholar
  19. Merk BC, Owens JL, Lopes MB, Silva CM, Hussaini IM (2011) STAT6 expression in glioblastoma promotes invasive growth. BMC Cancer 11:184. doi: 10.1186/1471-2407-11-184 PubMedCrossRefGoogle Scholar
  20. Mueller W, Nutt CL, Ehrich M, Riemenschneider MJ, von Deimling A, van den Boom D, Louis DN (2007) Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 26(4):583–593. doi: 10.1038/sj.onc.1209805 PubMedCrossRefGoogle Scholar
  21. Pennison M, Pasche B (2007) Targeting transforming growth factor-beta signaling. Curr Opin Oncol 19(6):579–585. doi: 10.1097/CCO.0b013e3282f0ad0e00001622-200711000-00007 PubMedCrossRefGoogle Scholar
  22. Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB (1985) Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci USA 82(1):119–123PubMedCrossRefGoogle Scholar
  23. Sato K, Tomizawa Y, Iijima H, Saito R, Ishizuka T, Nakajima T, Mori M (2006) Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncol Rep 15(1):129–135PubMedGoogle Scholar
  24. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236. doi: 10.3322/caac.20121 PubMedCrossRefGoogle Scholar
  25. Subramaniam MM, Chan JY, Yeoh KG, Quek T, Ito K, Salto-Tellez M (2009) Molecular pathology of RUNX3 in human carcinogenesis. Biochim Biophys Acta 1796(2):315–331. doi: 10.1016/j.bbcan.2009.07.004 PubMedGoogle Scholar
  26. Wada M, Yazumi S, Takaishi S, Hasegawa K, Sawada M, Tanaka H, Ida H, Sakakura C, Ito K, Ito Y, Chiba T (2004) Frequent loss of RUNX3 gene expression in human bile duct and pancreatic cancer cell lines. Oncogene 23(13):2401–2407. doi: 10.1038/sj.onc.12073951207395 PubMedCrossRefGoogle Scholar
  27. Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, Pepkowitz S, Goldfinger D, Ng H, Irvin D, Yu JS (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68(14):5955–5964. doi: 10.1158/0008-5472.CAN-07-5973 PubMedCrossRefGoogle Scholar
  28. Wu YY, Peck K, Chang YL, Pan SH, Cheng YF, Lin JC, Yang RB, Hong TM, Yang PC (2011) SCUBE3 is an endogenous TGF-beta receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene 30(34):3682–3693. doi: 10.1038/onc.2011.85 Google Scholar
  29. Xiao WH, Liu WW (2004) Hemizygous deletion and hypermethylation of RUNX3 gene in hepatocellular carcinoma. World J Gastroenterol 10(3):376–380PubMedGoogle Scholar
  30. Zhang Z, Chen G, Cheng Y, Martinka M, Li G (2011) Prognostic significance of RUNX3 expression in human melanoma. Cancer 117(12):2719–2727. doi: 10.1002/cncr.25838 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
  2. 2.Jiangsu Key Laboratory of Biological Cancer TherapyXuzhou Medical CollegeXuzhouChina
  3. 3.School of PathologyXuzhou Medical CollegeXuzhouChina
  4. 4.The First Affiliated Hospital of Xuzhou Medical CollegeXuzhouChina

Personalised recommendations