Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Liposome-complexed adenoviral gene transfer in cancer cells expressing various levels of coxsackievirus and adenovirus receptor

  • 145 Accesses

  • 19 Citations

Abstract

Purpose

Loss of coxsackievirus and adenovirus receptor (CAR) is frequently observed in malignant cancer, hampering adenoviral gene therapy approaches. Complexing adenovirus with cationic liposomes can increase adenoviral transgene expression, particularly in cells with CAR-deficiency. We investigated whether other factors such as lipid composition might be involved in determining the efficiency of liposome-complexed adenoviral gene transfer in cancer cells.

Material and methods

Human cancer cell lines with different expression levels of CAR were infected with a GFP transgene. The efficiency of transgene expression was assessed by determining GFP expression using FACS analysis.

Results

The efficiency of liposome-complexed adenoviral gene transfer was dependent on the lipid composition constituting liposomes. Polyethylene glycol (PEG)-containing liposomes were most effective in increasing liposome-complexed adenoviral gene transfer. In CAR-deficient cells, use of PEG-containing liposomes enhanced adenoviral gene transfer, whereas in CAR-expressing cells enhancement varied depending on cell type. In some CAR-expressing cells, the effect of liposome complexing was even comparable to that in CAR-deficient cells. Increased adenoviral transgene expression following complexing with PEG-containing liposomes correlated with liposome uptake in cancer cells.

Conclusions

Liposome-complexed adenoviral gene transfer appears to depend on lipid composition and the level of liposome uptake by cancer cells, in addition to CAR levels. Our study suggest that these multiple factors should be considered in designing liposome-complexed adenoviral vectors to improve outcomes of current adenoviral cancer gene therapies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5
Fig. 6

References

  1. Anders M, Christian C, Mcmahon M, et al (2003) Inhibition of the Rsf/MEK/ERK pathway up-regulates expression of the Coxsackievirus and Adenovirus receptor in cancer cells. Cancer Res 63:2088–2095

  2. Asaoka K, Tada M, Sawamura Y, Ikeda J, Abe H (2000) Dependence of efficient gene delivery in malignant glioma cells on the expression levels of the Coxsackievirus and adenovirus receptor. J Neurosurg 92:1002–1008

  3. Bergelson JM, Cunningham JA, Droguett G, et al (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

  4. Bruning A, Ronnebaum IB (2003) CAR is a cell-cell adhesion protein in human cancer cells and is expressionally modulated by dexamethasone, TNFα, and TGFβ. Gene Ther 9:619–624

  5. Buttgereit P, Weineck S, Ropke G, Marten A, Brand K, Heinicke T, Caselmann WH, Huhn D, Schmidt-Wolf IGH (2000) Efficient gene transfer into lymphoma cells using adenoviral vectors combined with lipofection. Cancer Gene Ther 7:1145–1155

  6. Byk T, Haddada H, Vainchenker W, Louache F (1998) Lipofectamine and related cationic lipids strongly improve adenoviral infection efficiency of primitive human hematopoietic cells. Human Gene Ther 9:2493–2502

  7. Carlisle RC (2002) Use of adenovirus proteins to enhance the transfection activity of synthetic gene delivery systems. Curr Opin Mol Ther 4:306–312

  8. Chillon M, Lee JH, Fasbender A, et al (1998) Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther 5:995–1002

  9. Fasbender AI, Zabner J, Chillon M, Moninger TO, Puga AP, Davidson BL, Welsh MJ (1997) Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J Biol Chem 272:6479–6489

  10. Fenske DB, Palmer LR, Chen T, et al (2001) Cationic poly(ethylenelycol) lipids incorporated into pre-formed vesicles enhance binding and uptake to BHK cells. Biochim Biophys Acta 1512:259–272

  11. Hemminki A, Kanerva A, Liu B, Wang M, Alvarez RD, Siegal GP, Curiel DT (2003) Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression. Cancer Res 63:847–853

  12. Jee YS, Lee SG, Lee JC, et al (2002) Reduced expression of coxsackievirus and adenovirus receptor (CAR) in tumor tissue compared to normal epithelium in head and neck squamous cell carcinoma patients. Anticancer Res 22:2629–2634

  13. Kim M, Zinn KR, Barnett BG, et al (2002) The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumor cells. Eur J Cancer 38:1917–1926

  14. Kitazono M, Goldsmith ME, Aikou T, Bates S, Fojo T (2001) Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228. Cancer Res 61:6328–6330

  15. Lee SG, Yoon SJ, Kim CD, Kim K, Lim DS, Yeom YI, Sung MW, Heo DS, Kim NK (2000) Enhancement of adenoviral transducton with polycationic liposomes in vivo. Cancer Gene Ther 7:1329–1335

  16. Li Y, Pong RC, Bergelson JM, et al (1999) Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 59:325–330

  17. Maizel J, White D, Scharff M (1968) The polypeptides of adenovirus. I. evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virol 36:115–125

  18. Maurer N, Mori A, Palmer L, et al (1999) Lipid-based systems for the intracellular delivery of genetic drugs. Mol Membr Biol 16:129–140

  19. Mok KW, Lam AM, Cullis PR (1999) Stabilized plasmid-lipid particles: factors influencing plasmid entrapment and transfection properties. Biochim Biophys Acta 1419:137–150

  20. Okegawa T, Li Y, Pong RC, Bergelson JM, Zhou J, Hsieh JT (2000) The dual impact of Coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res 60:5031–5036

  21. Pouton CW, Seymour LW (2001) Key issues in non-viral gene delivery. Adv Drug Deliv Rev 46:187–203

  22. Qiu C, De Young MB, Finn A, et al (1998) Cationic liposomes enhance adenovirus entry via a pathway independent of the fiber receptor and alpha(v)-integrins. Hum Gene Ther 9:507–520

  23. Ross PC, Hui SW (1999) Polyehylene glycol enhances lipoplex-cell association and lipofection.Biochim Biophys Acta 1421:273–283

  24. Song LY, Ahkong QF, Rong Q, Wang S, Ansell MJ, Mui HB (2002) Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. Biochim Biophys Acta 1558:1–13

  25. Toyoda K, Nakane H, Heistad DD (2001) Cationic polymer and lipids augment adenovirus-mediated gene transfer to cerebral arteries in vivo. J Cerebral Blood Flow Metabolism 21:1225–1131

  26. Uchida E, Mizuguchi H, Ishii-Watabe A, Hayakawa T (2002) Comparison of the efficiency and safety of nonviral vector-mediated gene transfer into a wide range of cancer cells. Biol Pharm Bull 25:891–897

  27. Wickham TJ, Mathias P, Cheresh DA, et al (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 3:309–319

  28. Yoshimura K, Rosenfeld M, Seth P, et al (1993) Adenovirus-mediated augmentation of cell transfection with unmodified plasmid vectors. J Biol Chem 268:2300–2303

  29. Yotnda P, Chen DH, Chiu W, Piedra PA, Davis A, Templeton NS, Brenner MK (2002) Bilamellar cationic liposomes protect adenovirus from preexisting humoral immune responses. Mol Ther 5:233–241

Download references

Acknowledgement

This work was supported by a research grant from the National Cancer Center

Author information

Correspondence to S. J. Lim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, E.M., Hong, S.H., Lee, Y.J. et al. Liposome-complexed adenoviral gene transfer in cancer cells expressing various levels of coxsackievirus and adenovirus receptor. J Cancer Res Clin Oncol 130, 169–177 (2004). https://doi.org/10.1007/s00432-003-0521-z

Download citation

Keywords

  • Adenovirus
  • Gene therapy
  • Liposome
  • Polyethylene glycol
  • Uptake
  • Coxsackievirus and adenovirus receptor