Advertisement

European Journal of Pediatrics

, Volume 178, Issue 1, pp 51–60 | Cite as

Follow-up and outcome of symptomatic partial or absolute IgA deficiency in children

  • Viviana Moschese
  • Loredana Chini
  • Simona Graziani
  • Mayla Sgrulletti
  • Vera Gallo
  • Gigliola Di Matteo
  • Simona Ferrari
  • Silvia Di Cesare
  • Emilia Cirillo
  • Andrea Pession
  • Claudio Pignata
  • Fernando Specchia
Original Article

Abstract

Selective IgA deficiency is defined as absolute or partial when serum IgA level is < 7 mg/dl or 2 SD below normal for age, respectively. Few data are available on partial selective IgA deficiency, as probably most children with low serum IgA are seldom referred to a specialist clinic in common pediatric practice. The aim of our study was to better define the profile of both symptomatic forms and their clinical outcome in a pediatric immunology setting. Thus, clinical and immunological data from 103 symptomatic patients with selective IgA deficiency (53 absolute and 50 partial), 4–18 years of age, were collected at diagnosis and 80 patients (44 absolute and 36 partial) were monitored for a mean period of 5 years. Also, the prevalence of TNFRSF13B mutations has been assessed in 56 patients. The most common clinical features were infections (86/103; 83%), allergy (39/103; 38%), and autoimmunity (13/103; 13%). No significative differences were observed between absolute and partial selective IgA deficiency patients. However, a significative difference in the rate of IgA normalization between partial and absolute selective IgA deficiency patients (33 vs 9%, p = 0.01) was detected. Furthermore, a lower incidence of infections was associated to a normalization reversal compared to a final absolute or partial defect status (12 vs 53 and 64% respectively, p < 0.01).

Conclusions: Regardless of a diagnosis of absolute or partial defect, monitoring of symptomatic patients with selective IgA deficiency is recommended overtime for prompt identification and treatment of associated diseases. Further, diagnostic workup protocols should be revisited in children with IgA deficiency.

What is Known:

● Selective IgA Deficiency is the most common primary immunodeficiency and is usually asymptomatic.

● Symptomatic pediatric patients with selective IgA deficiency mostly suffer with respiratory and gastrointestinal infections.

What is New:

● Symptomatic children with partial IgA defect may have similar clinical, immunological, and genetic features than symptomatic children with absolute IgA deficiency.

● Symptomatic children with partial IgA deficiency deserve accurate monitoring for associated diseases as per children with absolute IgA deficiency.

Keywords

TNFRSF13B Antibody deficiency Primary immunodeficiency Recurrent respiratory infections 

Abbreviations

SIGAD

Selective IgA deficiency

PID

Primary immunodeficiency disease

TACI

Transmembrane activator and calcium modulator and cyclophilin ligand interactor

CVID

Common variable immunodeficiency

aSIGAD

Absolute selective IgA deficiency

pSIGAD

Partial selective IgA deficiency

Notes

Acknowledgements

We thank all patients and their referring nursing and medical staff of the Italian Primary Immunodeficiency Network Centers for their participation. This work was carried out in the tutorial framework of Master in Advanced Pediatric Allergy and Immunology at University of Rome Tor Vergata.

Authors’ contributions

VM designed the study, analyzed and interpreted the data, wrote and critically reviewed the manuscript. LC and SG contributed to data interpretation and writing of the manuscript. CP, AP, FS critically reviewed and approved the final manuscript. MS, VG, EC contributed to the acquisition of data. SF, GDM, SDC performed all genetic and immunological analysis. VM designed the study, analyzed and interpreted the data, wrote and critically reviewed the manuscript. LC contributed to data interpretation and writing the manuscript. SG contributed to data interpretation and writing the manuscript. CP critically reviewed and approved the final manuscript. AP critically reviewed and approved the final manuscript. FS critically reviewed and approved the final manuscript. MS contributed to the acquisition of data. VG contributed to the acquisition of data. EC contributed to the acquisition of data. SF performed all genetic and immunological data. GDM performed all genetic and immunological data. SDC performed all genetic and immunological data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained at diagnosis from all individual participants included in the study.

Ethical standards

The approval for the study was obtained from the institutional review board. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Abolhassani H, Aghamohammadi A, Hammarström L (2016) Monogenic mutations associated with IgA deficiency. Expert Rev Clin Immunol 12(12):1321–1335.  https://doi.org/10.1080/1744666X.2016.1198696 Google Scholar
  2. 2.
    Agarwal S, Mayer L (2013) Diagnosis and treatment of gastrointestinal disorders in patients with primary immunodeficiency. Clin Gastroenterol Hepatol 11(9):1050–1063.  https://doi.org/10.1016/j.cgh.2013.02.024 Google Scholar
  3. 3.
    Aghamohammadi A, Abolhassani H, Biglari M, Abolmaali S, Moazzami K, Tabatabaeiyan M, Asgarian-Omran H, Parvaneh N, Mirahmadian M, Rezaei N (2011) Analysis of switched memory B cells in patients with IgA deficiency. Int Arch Allergy Immunol 156(4):462–468.  https://doi.org/10.1159/000323903 Google Scholar
  4. 4.
    Aghamohammadi A, Mohammadi J, Parvaneh N, Rezaei N, Moin M, Espanol T, Hammarstrom L (2008) Progression of selective IgA deficiency to common variable immunodeficiency. Int Arch Allergy Immunol 147:87–92.  https://doi.org/10.1159/000135694 Google Scholar
  5. 5.
    Aytekin C, Tuygun N, Gokce S, Dogu F, Ikinciogullari A (2012) Selective IgA deficiency: clinical and laboratory features of 118 children in Turkey. J Clin Immunol 32:961–966.  https://doi.org/10.1007/s10875-012-9702-3 Google Scholar
  6. 6.
    Barroeta Seijas AB, Graziani S, Cancrini C et al (2012) The impact of TACI mutations: from hypogammaglobulinemia in infancy to autoimmunity in adulthood. Int J Immunopathol Pharmacol 25(2):407–414.  https://doi.org/10.1177/039463201202500210 Google Scholar
  7. 7.
    Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP Jr, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D, Bonilla FA, Khan DA, Bernstein DI, Blessing-Moore J, Khan D, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D, Bonilla FA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP Jr, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW (2015) Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 136(5):1186–1205.  https://doi.org/10.1016/j.jaci.2015.04.049 Google Scholar
  8. 8.
    Bronson PG, Chang D, Bhangale T, Seldin MF, Ortmann W, Ferreira RC, Urcelay E, Pereira LF, Martin J, Plebani A, Lougaris V, Friman V, Freiberger T, Litzman J, Thon V, Pan-Hammarström Q, Hammarström L, Graham RR, Behrens TW (2016) Common variants at PVT1, ATG13-AMBRA1, AHI1 and CLEC16A are associated with selective IgA deficiency. Nat Genet 48(11):1425–1429.  https://doi.org/10.1038/ng.3675 Google Scholar
  9. 9.
    Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, Geha RS (2005) TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 37(8):829–834.  https://doi.org/10.1038/ng1601
  10. 10.
    Castigli E, Wilson S, Garibyan L, Rachid R, Bonilla F, Schneider L, Morra M, Curran J, Geha R (2007) Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet 39(4):430–431.  https://doi.org/10.1038/ng0407-430
  11. 11.
    Cunningham-Rundles C (2001) Physiology of IgA and IgA deficiency. J Clin Immunol 21(5):303–309Google Scholar
  12. 12.
    Duchamp M, Sterlin D, Diabate A, Uring-Lambert B, Guérin-el Khourouj V, le Mauff B, Monnier D, Malcus C, Labalette M, Picard C (2014) B-cell subpopulations in children: national reference values. Immun Inflamm Dis 2(3):131–140.  https://doi.org/10.1002/iid3.26 Google Scholar
  13. 13.
    Edwards E, Razvi S, Cunningham-Rundles C (2004) IgA deficiency: clinical correlates and responses to pneumococcal vaccine. Clin Immunol 111(1):93–97.  https://doi.org/10.1016/j.clim.2003.12.005 Google Scholar
  14. 14.
    Fahl K, Silva CA, Pastorino A, Carneiro-Sampaio M, Jacob CM (2015) Autoimmune diseases and auto-antibodies in pediatric patients and their first-degree relatives with immunoglobulin A deficiency. Rev Bras Reumatol 55(3):197–202.  https://doi.org/10.1016/j.rbr.2014.10.003 Google Scholar
  15. 15.
    Ferreira RC, Pan-Hammarström Q, Graham RR, Gateva V, Fontán G, Lee AT, Ortmann W, Urcelay E, Fernández-Arquero M, Núñez C, Jorgensen G, Ludviksson BR, Koskinen S, Haimila K, Clark HF, Klareskog L, Gregersen PK, Behrens TW, Hammarström L (2010) Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet 42(9):777–780.  https://doi.org/10.1038/ng.644 Google Scholar
  16. 16.
    Ferreira RC, Pan-Hammarström Q, Graham RR, Fontán G, Lee AT, Ortmann W, Wang N, Urcelay E, Fernández-Arquero M, Núñez C, Jorgensen G, Ludviksson BR, Koskinen S, Haimila K, Padyukov L, Gregersen PK, Hammarström L, Behrens TW (2012) High-density SNP mapping of the HLA region identifies multiple independent susceptibility loci associated with selective IgA deficiency. PLoS Genet 8(1):e1002476.  https://doi.org/10.1371/journal.pgen.1002476 Google Scholar
  17. 17.
    Freiberger T, Ravčuková B, Grodecká L, Pikulová Z, Štikarovská D, Pešák S, Kuklínek P, Jarkovský J, Salzer U, Litzman J (2012) Sequence variants of the TNFRSF13B gene in Czech CVID and IgAD patients in the context of other populations. Hum Immunol 73(11):1147–1154.  https://doi.org/10.1016/j.humimm.2012.07.342 Google Scholar
  18. 18.
    Gennery AR (2016) The evolving landscape of primary Immunodeficiencies. J Clin Immunol 36(4):339–340.  https://doi.org/10.1007/s10875-016-0273-6 Google Scholar
  19. 19.
    Haimila K, Einarsdottir E, De Kauwe A et al (2009) The shared CTLA4-ICOS risk locus in celiac disease, IgA deficiency and common variable immunodeficiency. Genes Immun 10(2):151–161.  https://doi.org/10.1038/gene.2008.89
  20. 20.
    Jacob CM, Pastorino AC, Fahl K et al (2008) Autoimmunity in IgA deficiency: revisiting the role of IgA as a silent housekeeper. J Clin Immunol 28(Suppl 1):S56–S61.  https://doi.org/10.1007/s10875-007-9163-2 Google Scholar
  21. 21.
    Janzi M, Kull I, Sjöberg R, Wan J, Melén E, Bayat N, Östblom E, Pan-Hammarström Q, Nilsson P, Hammarström L (2009) Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clin Immunol 133(1):78–85.  https://doi.org/10.1016/j.clim.2009.05.014 Google Scholar
  22. 22.
    Jorgensen GH, Gardulf A, Sigurdsson MI, Sigurdardottir ST, Thorsteinsdottir I, Gudmundsson S, Hammarström L, Ludviksson BR (2013) Clinical symptoms in adults with selective IgA deficiency: a case-control study. J Clin Immunol 33:742–747.  https://doi.org/10.1007/s10875-012-9858-x Google Scholar
  23. 23.
    Jorgensen GH, Ornolfsson AE, Johannesson A, Gudmundsson S, Janzi M, Wang N, Hammarström L, Ludviksson BR (2011) Association of immunoglobulin A deficiency and elevated thyrotropin receptor antibodies in two Nordic countries. Hum Immunol 72(2):166–172.  https://doi.org/10.1016/j.humimm.2010.10.014 Google Scholar
  24. 24.
    Koskinen S (1996) Long-term follow-up of health in blood donors with primary selective IgA deficiency. J Clin Immunol 16(3):165–170 https://www-ncbi-nlm-nih-gov/pubmed/8734360Google Scholar
  25. 25.
    Lim CK, Dahle C, Elvin K, Andersson BA, Rönnelid J, Melén E, Bergström A, Truedsson L, Hammarström L (2015) Reversal of immunoglobulin A deficiency in children. J Clin Immunol 35(1):87–91.  https://doi.org/10.1007/s10875-014-0112-6
  26. 26.
    López-Mejías R, del Pozo N, Fernández-Arquero M, Ferreira A, García-Rodríguez MC, de la Concha EG, Fontán G, Urcelay E, Martínez A, Núñez C (2009) Role of polymorphisms in the TNFRSF13B (TACI) gene in Spanish patients with immunoglobulin a deficiency. Tissue Antigens 74(1):42–45.  https://doi.org/10.1111/j.1399-0039.2009.01253.x Google Scholar
  27. 27.
    Ludvigsson JF, Neovius M, Hammarström L (2016) Risk of infections among 2100 individuals with IgA deficiency: a nationwide cohort study. J Clin Immunol 36(2):134–140.  https://doi.org/10.1007/s10875-015-0230-9 Google Scholar
  28. 28.
    Ludvigsson JF, Neovius M, Ye W, Hammarström L (2015) IgA deficiency and risk of cancer: a population-based matched cohort study. J Clin Immunol 35(2):182–188.  https://doi.org/10.1007/s10875-014-0124-2 Google Scholar
  29. 29.
    MacHulla HK, Schönermarck U, Schaaf A et al (2000) HLA-A, B, Cw and DRB1, DRB3/4/5, DQB1, DPB1 frequencies in German immunoglobulin A-deficient individuals. Scand J Immunol 52(2):207–211Google Scholar
  30. 30.
    Modell V, Knaus M, Modell F, Roifman C, Orange J, Notarangelo LD (2014) Global overview of primary immunodeficiencies: a report from Jeffrey Modell Centers worldwide focused on diagnosis, treatment, and discovery. Immunol Res 60(1):132–144.  https://doi.org/10.1007/s12026-014-8498-z Google Scholar
  31. 31.
    Mohammadi J, Ramanujam R, Jarefors S, Rezaei N, Aghamohammadi A, Gregersen PK, Hammarström L (2010) IgA deficiency and the MHC: assessment of relative risk and microheterogeneity within the HLA A1 B8, DR3 (8.1) haplotype. J Clin Immunol 30(1):138–143.  https://doi.org/10.1007/s10875-009-9336-2 Google Scholar
  32. 32.
    Nechvatalova J, Pikulova Z, Stikarovska D, Pesak S, Vlkova M, Litzman J (2012) B-lymphocyte subpopulations in patients with selective IgA deficiency. J Clin Immunol 32(3):441–448.  https://doi.org/10.1007/s10875-012-9655-6 Google Scholar
  33. 33.
    Nurkic J, Numanovic F, Arnautalic L, Tihic N, Halilovic D, Jahic M (2014) Diagnostic significance of reduced IgA in children. Med Arch 68(6):381–383.  https://doi.org/10.5455/medarh.2015.69.236-239 Google Scholar
  34. 34.
    Pignata C, Monaco G, Ciccimarra F (1991) Heterogeneity of IgA deficiency in childhood. Pediatr Allergy Immunol 2:38–40.  https://doi.org/10.1111/j.1399-3038.1991.tb00178.x Google Scholar
  35. 35.
    Pulvirenti F, Zuntini R, Milito C et al (2016) Clinical associations of biallelic and monoallelic TNFRSF13B variants in Italian primary antibody deficiency syndromes. J Immunol Res 2016:8390356.  https://doi.org/10.1155/2016/8390356 Google Scholar
  36. 36.
    Rezaei N, Abolhassani H, Kasraian A et al (2013) Family study of pediatric patients with primary antibody deficiencies. Iran J Allergy Asthma Immunol 12(4):377–382Google Scholar
  37. 37.
    Rich RR et al (2008) Clinical immunology principles and practice, 3rd edn. Mosby Elsevier, Maryland HeightsGoogle Scholar
  38. 38.
    Salzer U, Bacchelli C, Buckridge S, Pan-Hammarstrom Q, Jennings S, Lougaris V, Bergbreiter A, Hagena T, Birmelin J, Plebani A, Webster ADB, Peter HH, Suez D, Chapel H, McLean-Tooke A, Spickett GP, Anover-Sombke S, Ochs HD, Urschel S, Belohradsky BH, Ugrinovic S, Kumararatne DS, Lawrence TC, Holm AM, Franco JL, Schulze I, Schneider P, Gertz EM, Schaffer AA, Hammarstrom L, Thrasher AJ, Gaspar HB, Grimbacher B (2009) Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood 113(9):1967–1976.  https://doi.org/10.1182/blood-2008-02-141937 Google Scholar
  39. 39.
    Schatorjé EJ, Gemen EF, Driessen GJ, Leuvenink J, van Hout RW, de Vries E (2012) Paediatric reference values for the peripheral T cell compartment. Scand J Immunol 75(4):436–444.  https://doi.org/10.1111/j.1365-3083.2012.02671.x Google Scholar
  40. 40.
    Shakkottai A, Bupathi K, Patel AP, Chalom E, Chamarthi S, Lehman TJA, Peterson MGE, Gaur S, Moorthy LN (2012) Children with partial IgA deficiency: clinical characteristics observed in the pediatric rheumatology clinic. Clin Pediatr (Phila) 51(1):46–50.  https://doi.org/10.1177/0009922811417287 Google Scholar
  41. 41.
    Shkalim V, Monselize Y, Segal N, Zan-Bar I, Hoffer V, Garty BZ (2010) Selective IgA deficiency in children in Israel. J Clin Immunol 30(5):761–765.  https://doi.org/10.1007/s10875-010-9438-x Google Scholar
  42. 42.
    Singh K, Chang C, Gershwin ME (2014) IgA deficiency and autoimmunity. Autoimmun Rev 13(2):163–177.  https://doi.org/10.1016/j.autrev.2013.10.005 Google Scholar
  43. 43.
    Urm SH, Yun HD, Fenta YA, Yoo KH, Abraham RS, Hagan J, Juhn YJ (2013) Asthma and risk of selective IgA deficiency or common variable immunodeficiency: a population-based case-control study. Mayo Clin Proc 88(8):813–821.  https://doi.org/10.1016/j.mayocp Google Scholar
  44. 44.
    Wang N, Hammarstrom L (2012) IgA deficiency: what is new? Curr Opin Allergy Clin Immunol 12(6):602–608.  https://doi.org/10.1097/ACI.0b013e3283594219 Google Scholar
  45. 45.
    Wang N, Shen N, Vyse TJ et al (2011) Selective IgA deficiency in autoimmune diseases. Mol Med 17:1383–1396.  https://doi.org/10.2119/molmed.2011.00195 Google Scholar
  46. 46.
    Yazdani R, Azizi G, Abolhassani H, Aghamohammadi A (2017) Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scand J Immunol 85(1):3–12.  https://doi.org/10.1111/sji.12499 Google Scholar
  47. 47.
    Yazdani R, Latif A, Tabassomi F (2015) Clinical phenotype classification for selective immunoglobulin A deficiency. Expert Rev Clin Immunol 11(11):1245–1254.  https://doi.org/10.1586/1744666X Google Scholar
  48. 48.
    Yel L (2010) Selective IgA deficiency. J Clin Immunol 30(1):10–16.  https://doi.org/10.1007/s10875-009-9357-x Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Viviana Moschese
    • 1
  • Loredana Chini
    • 1
  • Simona Graziani
    • 1
  • Mayla Sgrulletti
    • 1
  • Vera Gallo
    • 2
  • Gigliola Di Matteo
    • 1
  • Simona Ferrari
    • 3
  • Silvia Di Cesare
    • 1
  • Emilia Cirillo
    • 2
  • Andrea Pession
    • 4
  • Claudio Pignata
    • 2
  • Fernando Specchia
    • 4
  1. 1.Pediatric Immunopathology and Allergology UnitUniversity of Rome Tor VergataRomeItaly
  2. 2.Department of Translational Medical Sciences- Section of PediatricsFederico II UniversityNaplesItaly
  3. 3.Medical Genetics UnitS.Orsola-Malpighi University HospitalBolognaItaly
  4. 4.Pediatric Unit, Department of Woman, Child and Urologic DiseasesUniversity of BolognaBolognaItaly

Personalised recommendations