Advertisement

Multiresistant Neisseria gonorrhoeae: a new threat in second decade of the XXI century

  • Beata Młynarczyk-Bonikowska
  • Anna MajewskaEmail author
  • Magdalena Malejczyk
  • Grażyna Młynarczyk
  • Sławomir Majewski
Review

Abstract

Neisseria gonorrhoeae is an etiologic agent of gonorrhoea, one of the most common sexually transmitted diseases caused by bacteria. For many years, infections caused by N. gonorrhoeae were considered to be relatively easy to treat; however, resistance has emerged successively to all therapeutic agents used in treatment of the disease, e.g., penicillin, ciprofloxacin or azithromycin. Currently, the global problem is the emergence and a threat of spread of N. gonorrhoeae strains resistant to extended-spectrum cephalosporins (ESC), such as injectable ceftriaxone and oral-used cefixime. Especially, dangerous are multi-resistant strains resistant simultaneously to ESC and azithromycin. Three strains with high-level resistance to azithromycin and resistant to ESC were first time isolated in 2018. Moreover, in 2018, the first ESBL was described in N. gonorrhoeae and that makes the threat of appearing the ESBL mechanism of resistance in N. gonorrhoeae more real, even though the strain was sensitive to ceftriaxone. Molecular typing revealed that variants resistant to ESC occurred also among strains belonging to epidemic clonal complex CC1 (genogroup G1407) distinguished in NG-MAST typing system. The G1407 genogroup, in particular the ST1407 sequence type, is currently dominant in most European countries. The presence of different mechanisms of drug resistance significantly affects clinical practice and force changes in treatment regimens and introduction of new drugs.

Keywords

Epidemic clones NG-MAST Gonorrhoea Mechanisms of antibiotic resistance Multiresistant Neisseria gonorrhoeae 

Notes

Complicate with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    CDC (2014) Sexually transmitted diseases surveillance 2012. US Department of Health and Human Services, AtlantaGoogle Scholar
  2. 2.
    de Coul EO, Warning T, Koedijk F (2014) Sexual behaviour and sexually transmitted infections in sexually transmitted infection clinic attendees in the Netherlands, 2007–2011. Int J STD AIDS 25(1):40–51.  https://doi.org/10.1177/0956462413491736 CrossRefPubMedGoogle Scholar
  3. 3.
    Majewska A, Mlynarczyk-Bonikowska B, Malejczyk M, Mlynarczyk G, Majewski S (2015) Antiviral medication in sexually transmitted diseases. Part II: HIV. Mini Rev Med Chem 15:93–103PubMedCrossRefGoogle Scholar
  4. 4.
    Jacobsson S, Boiko I, Golparian D, Blondeel K, Kiarie J, Toskin I et al (2018) WHO laboratory validation of Xpert® CT/NG and Xpert® TV on the GeneXpert system verifies high performances. APMIS 126(12):907–912PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Vyth R, Leval A, Eriksson B, Ericson EL, Marions L, Hergens MP (2016) Gonorrhoea diagnostic and treatment uncertainties: risk factors for culture negative confirmation after positive nucleic acid amplification tests. PloS One 11(5):e0155017.  https://doi.org/10.1371/journal.pone.0155017 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N et al (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PloS One 10:e0143304PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chen SC, Yin YP, Dai XQ, Unemo M, Chen XS (2014) Antimicrobial resistance, genetic resistance determinants for ceftriaxone and molecular epidemiology of Neisseria gonorrhoeae isolates in Nanjing, China. J Antimicrob Chemother 69:2959–2965PubMedCrossRefGoogle Scholar
  8. 8.
    Chen SC, Yin YP, Dai XQ, Unemo M, Chen XS (2016) First nationwide study regarding ceftriaxone resistance and molecular epidemiology of Neisseria gonorrhoeae in China. J Antimicrob Chemother 71:92–99PubMedCrossRefGoogle Scholar
  9. 9.
    Cole MJ, Spiteri G, Jacobsson S, Woodford N, Tripodo F, Amato-Gauci AJ et al (2017) Overall low extended-spectrum cephalosporin resistance but high azithromycin resistance in Neisseria gonorrhoeae in 24 European countries, 2015. BMC Infect Dis 17:617PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Unemo M, Del Rio C, Shafer WM (2016) Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiol Spectr 4:1–32CrossRefGoogle Scholar
  11. 11.
    Brooks M (2016) CDC finds first cluster of highly resistant gonorrhea in US. Medscape http://www.medscape.com/viewarticle/869170. Accessed 25 Aug 2018
  12. 12.
    Unemo M, Ringlander J, Wiggins C, Fredlund H, Jacobsson S, Cole M et al (2015) High in vitro susceptibility to the novel spiropyrimidinetrione AZD0914 among contemporary clinical Neisseria gonorrhoeae isolates in 21 European countries. Antimicrob Agents Chemother 59:5220–5225PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jacobsson S, Paukner S, Golparian D, Jensen JS, Unemo M (2017) In Vitro activity of the novel pleuromutilin lefamulin (BC-3781) and effect of efflux pump inactivation on multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother.  https://doi.org/10.1128/AAC.01497-17 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jacobsson S, Golparian D, Scangarella-Oman N, Unemo M (2018) In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J Antimicrob Chemother 73(8):2072–2077PubMedCrossRefGoogle Scholar
  15. 15.
    Suay-García B, Pérez-Gracia MT (2018) Future prospects for Neisseria gonorrhoeae treatment. Antibiotics 7:2.  https://doi.org/10.3390/antibiotics7020049 CrossRefGoogle Scholar
  16. 16.
    Jönsson A, Foerster S, Golparian D, Hamasuna R, Jacobsson S, Lindberg M et al (2018) In vitro activity and time-kill curve analysis of sitafloxacin against a global panel of antimicrobial-resistant and multidrug-resistant Neisseria gonorrhoeae isolates. APMIS 126(1):29–37.  https://doi.org/10.1111/apm.12777 CrossRefPubMedGoogle Scholar
  17. 17.
    Riedel S, Vijayakumar D, Berg G, Kang AD, Smith KP, Kirby JE (2019) Evaluation of apramycin against spectinomycin-resistant and -susceptible strains of Neisseria gonorrhoeae. J Antimicrob Chemother.  https://doi.org/10.1093/jac/dkz012 CrossRefPubMedGoogle Scholar
  18. 18.
    Butler MM, Waidyarachchi SL, Connolly KL, Jerse AE, Chai W, Lee RE et al (2018) Aminomethyl spectinomycins as therapeutics for drug-resistant gonorrhea and chlamydia coinfections. Antimicrob Agents Chemother 62:5.  https://doi.org/10.1128/AAC.00325-18 CrossRefGoogle Scholar
  19. 19.
    Jacobsson S, Mason C, Khan N, Meo P, Unemo M (2019) In vitro activity of the novel oral antimicrobial SMT-571, with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae: future treatment option for gonorrhoea? J Antimicrob Chemother.  https://doi.org/10.1093/jac/dkz060 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gulati S, Shaughnessy J, Ram S, Rice PA (2019) Targeting lipooligosaccharide (LOS) for a gonococcal vaccine. Front Immunol 10:321.  https://doi.org/10.3389/fimmu.2019.00321 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rice PA, Shafer WM, Ram S, Jerse AE (2017) Neisseria gonorrhoeae: drug resistance, mouse models, and vaccine development. Annu Rev Microbiol 71:665–686PubMedCrossRefGoogle Scholar
  22. 22.
    World Health Organization (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ Geneva 2017. Accessed 10 Sept 2018
  23. 23.
    Demczuk W, Sidhu S, Unemo M, Whiley DM, Allen VG, Dillon JR et al (2017) Neisseria gonorrhoeae sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of N. gonorrhoeae strains. J Clin Microbiol 55:1454–1468PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Endimiani A, Guilarte YN, Tinguely R, Hirzberger L, Selvini S, Lupo A et al (2014) Characterization of Neisseria gonorrhoeae isolates detected in Switzerland (1998–2012): emergence of multidrug-resistant clones less susceptible to cephalosporins. BMC Infect Dis 14:106PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jeverica S, Golparian D, Maticic M, Potocnik M, Mlakar BX, Unemo M (2014) Phenotypic and molecular characterization of Neisseria gonorrhoeae isolates from Slovenia, 2006–12: rise and fall of the multidrug-resistant NG-MAST genogroup 1407 clone? J Antimicrob Chemother 69:1517–1525PubMedCrossRefGoogle Scholar
  26. 26.
    Lind I (1997) Antimicrobial resistance in Neisseria gonorrhoeae. Clin Infect Dis 24(Suppl 1):S93–S97PubMedCrossRefGoogle Scholar
  27. 27.
    Miller CP, Bohnhoff M (1945) Studies on the action of penicillin; development of penicillin resistance by gonococcus. Proc Soc Exp Biol Med 60:354–356PubMedCrossRefGoogle Scholar
  28. 28.
    Roberts MC, Chung WO, Roe D, Xia M, Marquez C, Borthagaray G et al (1999) Erythromycin-resistant Neisseria gonorrhoeae and oral commensal Neisseria spp. carry known rRNA methylase genes. Antimicrob Agents Chemother 43:1367–1372PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ohnishi M, Saika T, Hoshina S, Iwasaku K, Nakayama S, Watanabe H et al (2011) Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg Infect Dis 17:148–149PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P (2012) High-level cefixime- and ceftriaxone-resistant N. gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 56:1273–1280PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cole MJ, Ison C, Woodford NJ (2018) Transfer of a gonococcal β-lactamase plasmid into Neisseria gonorrhoeae belonging to the globally distributed ST1407 lineage. J Antimicrob Chemother 73(9):2576–2577PubMedCrossRefGoogle Scholar
  32. 32.
    Cole MJ, Quaye N, Jacobsson S, Day M, Fagan E, Ison C et al (2019) Ten years of external quality assessment (EQA) of Neisseria gonorrhoeae antimicrobial susceptibility testing in Europe elucidate high reliability of data. BMC Infect Dis 19:281PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Clinical and Laboratory Standards Institute (CLSI) (2019) Performance standards for antimicrobial susceptibility testing, CLSI document M100-ED29: 2019. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  34. 34.
    European Committee on Antimicrobial Susceptibility Testing (2019) Breakpoints tables for interpretation of MICs and zones diameters. Version 9.0 http://www.eucast.org. Accessed 25 Mar 2019
  35. 35.
    Hamilton HL, Dillard JP (2006) Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol 59:376–385PubMedCrossRefGoogle Scholar
  36. 36.
    Spratt BG (1988) Hybrid penicillin-binding proteins in penicillin resistant strains of Neisseria gonorrhoeae. Nature 332:173–176PubMedCrossRefGoogle Scholar
  37. 37.
    Faruki H, Kohmescher RN, McKinney WP, Sparling PF (1985) A community-based outbreak of infection with penicillin-resistant Neisseria gonorrhoeae not producing penicillinase (chromosomally mediated resistance). N Engl J Med 313:607–611PubMedCrossRefGoogle Scholar
  38. 38.
    Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K et al (2011) Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 55:3538–3545PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Shimuta K, Unemo M, Nakayama S, Morita-Ishihara T, Dorin M, Kawahata T, Ohnishi M (2013) Antimicrobial resistance and molecular typing of Neisseria gonorrhoeae isolates in Kyoto and Osaka, Japan, 2010 to 2012: intensified surveillance after identification of the first strain (H041) with high-level ceftriaxone resistance. Antimicrob Agents Chemother 57:5225–5232PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Golparian D, Rose L, Lynam A, Mohamed A, Bercot B, Ohnishi M et al (2018) Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, Ireland, August 2018. Euro Surveill.  https://doi.org/10.2807/1560-7917.ES.2018.23.47.1800617 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Whiley DM, Jennison A, Pearson J, Lahra MM (2018) Genetic characterisation of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect Dis 18(7):717–718PubMedCrossRefGoogle Scholar
  42. 42.
    Eyre DW, Sanderson ND, Lord E, Regisford-Reimmer N, Chau K, Barker L et al (2018) Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill.  https://doi.org/10.2807/1560-7917.ES.2018.23.27.1800323 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Poncin T, Fouere S, Braille A, Camelena F, Agsous M, Bebear C et al (2018) Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Euro Surveill.  https://doi.org/10.2807/1560-7917.ES.2018.23.21.1800264 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Terkelsen D, Tolstrup J, Johnsen CH, Lund O, Larsen HK, Worning P et al (2017) Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Euro Surveill.  https://doi.org/10.2807/1560-7917 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lefebvre B, Martin I, Demczuk W, Deshaies L, Michaud S, Labbé AC et al (2018) Ceftriaxone-resistant Neisseria gonorrhoeae, Canada, 2017. Emerg Infect Dis.  https://doi.org/10.3201/eid2402.171756 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lahra MM, Martin I, Demczuk W, Jennison AV, Lee KI, Nakayama SI et al (2018) Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain. Emerg Infect Dis.  https://doi.org/10.3201/eid2404.171873 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nakayama S, Shimuta K, Furubayashi K, Kawahata T, Unemo M, Ohnishi M (2016) New ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan. Antimicrob Agents Chemother 60(7):4339–4341PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gianecini RA, Golparian D, Zittermann S, Litvik A, Gonzalez S, Oviedo C et al (2019) Genome-based epidemiology and antimicrobial resistance determinants of Neisseria gonorrhoeae isolates with decreased susceptibility and resistance to extended-spectrum cephalosporins in Argentina in 2011–16. J Antimicrob Chemother.  https://doi.org/10.1093/jac/dkz054 CrossRefPubMedGoogle Scholar
  49. 49.
    Gianecini R, Oviedo C, Stafforini G, Galarza P (2016) Neisseria gonorrhoeae resistant to ceftriaxone and cefixime, Argentina. Emerg Infect Dis 22(6):1139–1141PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lahra MM, Ryder N, Whiley DM (2014) A new multidrug-resistant strain of Neisseria gonorrhoeae in Australia. N Engl J Med 371:1850–1851PubMedCrossRefGoogle Scholar
  51. 51.
    Cámara J, Serra J, Ayats J, Bastida T, Carnicer-Pont D, Andreu A et al (2012) Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J Antimicrob Chemother 67:1858–1860PubMedCrossRefGoogle Scholar
  52. 52.
    European Centre for Disease Prevention and Control (2018) Extensively drug-resistant (XDR) Neisseria gonorrhoeae in the United Kingdom and Australia—7 May 2018. ECDC, StockholmGoogle Scholar
  53. 53.
    Mlynarczyk-Bonikowska B, Malejczyk M, Majewski S, Unemo M (2018) Antibiotic resistance and NG-MAST sequence types of Neisseria gonorrhoeae isolates in Poland compared to internationally. Post Dermatol Alergol 35(6):546–551CrossRefGoogle Scholar
  54. 54.
    Igawa G, Yamagishi Y, Lee KI, Dorin M, Shimuta K, Suematsu H et al (2018) Neisseria cinerea with high ceftriaxone MIC is a source of ceftriaxone and cefixime resistance-mediating penA sequences in Neisseria gonorrhoeae. Antimicrob Agents Chemother.  https://doi.org/10.1128/AAC.02069-17 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gose S, Nguyen D, Lowenberg D, Samuel M, Bauer H, Pandori M (2013) Neisseria gonorrhoeae and extended-spectrum cephalosporins in California: surveillance and molecular detection of mosaic penA. BMC Infect Dis 13:570PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Whiley DM, Goire N, Lambert SB, Ray S, Limnios EA, Nissen MD et al (2010) Reduced susceptibility to ceftriaxone in Neisseria gonorrhoeae is associated with mutations G542S, P551S and P551L in the gonococcal penicillin-binding protein 2. J Antimicrob Chemother 65:1615–1618PubMedCrossRefGoogle Scholar
  57. 57.
    Li S, Su X, Le W, Jiang F, Wang B, Rice PA (2014) Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from symptomatic men attending the Nanjing sexually transmitted diseases clinic (2011–2012): genetic characteristics of isolates with reduced sensitivity to ceftriaxone. BMC Infect Dis 14:622PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Unemo M, Golparian D, Sanchez-Buso L, Grad Y, Jacobsson S, Ohnishi M et al (2016) The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 71:3096–3108PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhao S, Tobiason DM, Hu M, Seifert HS, Nicholas RA (2005) The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol Microbiol 57:1238–1251PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lee H, Unemo M, Kim HJ, Seo Y, Lee K, Chong Y (2015) Emergence of decreased susceptibility and resistance to extended-spectrum cephalosporins in Neisseria gonorrhoeae in Korea. J Antimicrob Chemother 70:2536–2542PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    ECDC surveillance report gonococcal antimicrobial susceptibility surveillance in Europe 2016 (2018) European Centre for Disease Prevention and Control, Stockholm htttp://www.ecdc.europa.eu. Accessed 11 Sept 2018
  62. 62.
    Mlynarczyk-Bonikowska B, Kujawa M, Mlynarczyk G, Malejczyk M, Majewski S (2016) Susceptibility to ceftriaxone and penicillinase plasmids of Neisseria gonorrhoeae strains isolated in Poland in 2012–2013. Folia Microbiol 61:269–273CrossRefGoogle Scholar
  63. 63.
    Mlynarczyk-Bonikowska B, Serwin AB, Golparian D, Walter de Walthoffen S, Majewski S, Koper M et al (2014) Epidemiology, antimicrobial susceptibility/resistance and genetic characteristics of Neisseria gonorrhoeae isolates from Poland, 2010–2012. BMC Infect Dis 14:65PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Phillips I (1976) Beta-lactamase-producing, penicillin-resistant gonococcus. Lancet 2:656–657PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Dillon JAR, Li H, Yeung K, Aman TA (1999) A PCR assay for discriminating Neisseria gonorrhoeae beta-lactamase-producing plasmids. Mol Cell Probes 13:89–92PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Fayemiwo SA, Muller EE, Gumede L, Lewis DA (2011) Plasmid-mediated penicillin and tetracycline resistance among Neisseria gonorrhoeae isolates in South Africa: prevalence, detection and typing using a novel molecular assay. Sex Transm Dis 38:329–333PubMedPubMedCentralGoogle Scholar
  67. 67.
    Ohnishi M, Ono E, Shimuta K, Watanabe H, Okamura N (2010) Identification of TEM-135 beta-lactamase in penicillinase-producing Neisseria gonorrhoeae strains in Japan. Antimicrob Agents Chemother 54:3021–3023PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Pagotto F, Aman AT, Ng LK, Yeung KH, Brett M, Dillon JA (2000) Sequence analysis of the family of penicillinase-producing plasmids of Neisseria gonorrhoeae. Plasmid 43:24–34PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Trembizki E, Buckley C, Lawrence A, Lahra M, Whiley D, GRAND Study Investigators (2014) Characterization of a novel Neisseria gonorrhoeae penicillinase-producing plasmid isolated in Australia in 2012. Antimicrob Agents Chemother 58:4984–4985CrossRefGoogle Scholar
  70. 70.
    Gianecini R, Oviedo C, Littvik A, Mendez E, Piccoli L, Montibello S et al (2015) Identification of TEM-135 β-lactamase in Neisseria gonorrhoeae strains carrying African and Toronto plasmids in Argentina. Antimicrob Agents Chemother 59:717–720PubMedCrossRefGoogle Scholar
  71. 71.
    Muhammad I, Golparian D, Dillon JA, Johansson A, Ohnishi M, Sethi S et al (2014) Characterization of blaTEM genes and types of β-lactamase plasmids in Neisseria gonorrhoeae—the prevalent and conserved blaTEM-135 has not recently evolved and existed in the Toronto plasmid from the origin. BMC Infect Dis 14:454PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Micaëlo M, Goubard A, La Ruche G, Denamur E, Tenaillon O, Cambau E et al (2017) Molecular epidemiology of penicillinase-producing Neisseria gonorrhoeae isolates in France. Clin Microbiol Infect 23:968–973PubMedCrossRefGoogle Scholar
  73. 73.
    Ryan L, Golparian D, Fennelly N, Rose L, Walsh P, Lawlor B et al (2018) Antimicrobial resistance and molecular epidemiology using whole-genome sequencing of Neisseria gonorrhoeae in Ireland, 2014–2016: focus on extended-spectrum cephalosporins and azithromycin. Eur J Clin Microbiol Infect Dis 37(9):1661–1672.  https://doi.org/10.1007/s10096-018-3296-5 CrossRefPubMedGoogle Scholar
  74. 74.
    Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969–976PubMedCrossRefGoogle Scholar
  75. 75.
    Bush K, Palzkill T, Jacoby G (2018) Beta-lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes, Lahey Clinic http://www.lahey.org/Studies/. Accessed 5 Sept 2018
  76. 76.
    Bala M, Kakran M, Singh V, Sood S, Ramesh V, Members of WHO GASP SEAR Network (2013) Monitoring antimicrobial resistance in Neisseria gonorrhoeae in selected countries of the WHO south–east Asia region between 2009 and 2012: a retrospective analysis. Sex Transm Infect 89:iv28–iv35PubMedCrossRefGoogle Scholar
  77. 77.
    Bharara T, Bhalla P, Rawat D, Garg VK, Sardana K, Chakravarti A (2015) Rising trend of antimicrobial resistance among Neisseria gonorrhoeae isolates and the emergence of N. gonorrhoeae isolate with decreased susceptibility to ceftriaxone. Indian J Med Microbiol 33:39–42PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lawung R, Cherdtrakulkiat R, Charoenwatanachokchai A, Nabu S, Lokpichart S, Prachayasittikul V (2012) Antimicrobial resistance markers as a monitoring index of gonorrhoea in Thailand. Acta Microbiol Immunol Hung 59:157–169PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Demczuk W, Martin I, Peterson S, Bharat A, Van Domselaar G, Graham M et al (2016) Genomic epidemiology and molecular resistance mechanisms of azithromycin resistant Neisseria gonorrhoeae in Canada from 1997 to 2014. J Clin Microbiol 54:1304–1313PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Takayama Y, Nakayama S, Shimuta K, Morita-Ishihara T, Ohnishi M (2014) Characterization of azithromycin-resistant Neisseria gonorrhoeae isolated in Tokyo in 2005–2011. J Infect Chemother 20:339–341PubMedCrossRefGoogle Scholar
  81. 81.
    Unemo M, Golparian D, Hellmark B (2014) First three Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Sweden: a threat to currently available dual-antimicrobial regimens for treatment of gonorrhea? Antimicrob Agents Chemother 58:624–625PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chisholm SA, Wilson J, Alexander S, Tripodo F, Al-Shahib A, Schaefer U et al (2016) An outbreak of high-level azithromycin resistant Neisseria gonorrhoeae in England. Sex Transm Infect 92:365–367PubMedCrossRefGoogle Scholar
  83. 83.
    Ohneck EA, Zalucki YM, Johnson PJ, Dhulipala V, Golparian D, Unemo M et al (2011) A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae. Mbio 2:e00187–e00211PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Shams-ur-Rehman Khan A, Amanullah Akhter K (2009) Clinical efficacy of the various drugs used in the treatment of gonorrhoeae. J Ayub Med Coll Abbottabad 21:28–30PubMedGoogle Scholar
  85. 85.
    Ohneck EA, Goytia M, Rouquette-Loughlin CE, Joseph SJ, Read TD, Jerse AE et al (2015) Overproduction of the MtrCDE efflux pump in Neisseria gonorrhoeae produces unexpected changes in cellular transcription patterns. Antimicrob Agents Chemother 59:724–726PubMedCrossRefGoogle Scholar
  86. 86.
    Cousin S Jr, Whittington WL, Roberts MC (2003) Acquired macrolide resistance genes in pathogenic Neisseria spp. isolated between 1940 and 1987. Antimicrob Agents Chemother 47:3877–3880PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Golparian D, Shafer WM, Ohnishi M, Unemo M (2014) Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 58:3556–3559PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Mlynarczyk B, Mlynarczyk A, Kmera-Muszyńska M, Majewski S, Mlynarczyk G (2010) Mechanisms of resistance to antimicrobial drugs in pathogenic Gram-positive cocci. Mini Rev Med Chem 10:928–937PubMedCrossRefGoogle Scholar
  89. 89.
    Jacobsson S, Golparian D, Cole M, Spiteri G, Martin I, Bergheim T et al (2016) WGS analysis and molecular resistance mechanisms of azithromycin-resistant (MIC > 2 mg/L) Neisseria gonorrhoeae isolates in Europe from 2009 to 2014. J Antimicrob Chemother 71:3109–3116PubMedCrossRefGoogle Scholar
  90. 90.
    European Centre for Disease Prevention and Control (2019) Gonococcal antimicrobial susceptibility surveillance in Europe—results summary 2017. ECDC, StockholmGoogle Scholar
  91. 91.
    European Centre for Disease Prevention and Control (2018) Gonococcal antimicrobial susceptibility surveillance in Europe, 2016. ECDC, StockholmGoogle Scholar
  92. 92.
    Day MJ, Spiteri G, Jacobsson S, Woodford N, Amato-Gauci AJ, Cole MJ et al (2018) Stably high azithromycin resistance and decreasing ceftriaxone susceptibility in Neisseria gonorrhoeae in 25 European countries, 2016. BMC Infect Dis 18(1):609.  https://doi.org/10.1186/s12879-018-3528-4 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kong FYS, Horner P, Unemo M, Hocking JS (2019) Pharmacokinetic considerations regarding the treatment of bacterial sexually transmitted infections with azithromycin: a review. J Antimicrob Chemother.  https://doi.org/10.1093/jac/dky548 CrossRefPubMedGoogle Scholar
  94. 94.
    Kubanov A, Vorobyev D, Chestkov A, Leinsoo A, Shaskolskiy B, Dementieva EV et al (2016) Molecular epidemiology of drug-resistant Neisseria gonorrhoeae in Russia (current status, 2015). BMC Infect Dis 16:389PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kulkarni S, Bala M, Sane S, Pandey S, Bhattacharya J, Risbud A (2012) Mutations in the gyrA and parC genes of quinolone-resistant Neisseria gonorrhoeae isolates in India. Int J Antimicrob Agents 40:549–553PubMedCrossRefGoogle Scholar
  96. 96.
    Zhao LH, Zhao SP (2013) Molecular basis of high-level ciprofloxacin resistance in Neisseria gonorrhoeae strains from Shandong province, China. Braz J Microbiol 44:273–276PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Uehara AA, Amorin EL, MdeF Ferreira, Andrade CF, Clementino MB, de Filippis I et al (2011) Molecular characterization of quinolone-resistant Neisseria gonorrhoeae isolates from Brazil. J Clin Microbiol 49:4208–4212PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Chisholm SA, Alexander S, Desouza-Thomas L, Maclure-Webster E, Anderson J, Nichols T et al (2011) Emergence of a Neisseria gonorrhoeae clone showing decreased susceptibility to cefixime in England and Wales. J Antimicrob Chemother 66:2509–2512PubMedCrossRefGoogle Scholar
  99. 99.
    Lindback E, Rahman M, Jalal S, Wretlind B (2002) Mutations in gyrA, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. APMIS 110:651–657PubMedCrossRefGoogle Scholar
  100. 100.
    Barbee LA, Soge OO, Holmes KK, Golden MR (2014) In vitro synergy testing of novel antimicrobial combination therapies against Neisseria gonorrhoeae. J Antimicrob Chemother 69:1572–1578PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kerani RP, Stenger MR, Weinstock H, Bernstein KT, Reed M, Schumacher C et al (2015) Gonorrhea treatment practices in the STD surveillance network, 2010–2012. Sex Transm Dis 42:6–12PubMedCrossRefGoogle Scholar
  102. 102.
    Lechtenberg RJ, Samuel MC, Bernstein KT, Lahiff M, Olson N, Bauer HM (2014) Variation in adherence to the treatment guidelines for Neisseria gonorrhoeae by clinical practice setting, California, 2009 to 2011. Sex Transm Dis 41:338–344PubMedCrossRefGoogle Scholar
  103. 103.
    Singh AE, Gratrix J, Martin I, Friedman DS, Hoang L, Lester R et al (2015) Gonorrhea treatment failures with oral and injectable expanded spectrum cephalosporin monotherapy vs dual therapy at 4 Canadian sexually transmitted infection clinics, 2010–2013. Sex Transm Dis 42:331–336PubMedCrossRefGoogle Scholar
  104. 104.
    Starnino S, Neri A, Stefanelli P, Neisseria gonorrhoeae Italian Study Group (2008) Molecular analysis of tetracycline-resistant gonococci: rapid detection of resistant genotypes using a real-time PCR assay. FEMS Microbiol Lett 286:16–23PubMedCrossRefGoogle Scholar
  105. 105.
    Roberts MC (2011) Environmental macrolide–lincosamide–streptogramin and tetracycline resistant bacteria. Front Microbiol 2:1–8CrossRefGoogle Scholar
  106. 106.
    Chalkley LJ, Janse van Rensburg MN, Matthee PC, Ison CA, Botha PL (1997) Plasmid analysis of Neisseria gonorrhoeae isolates and dissemination of tetM genes in southern Africa 1993–1995. J Antimicrob Chemother 40:817–822PubMedCrossRefGoogle Scholar
  107. 107.
    Gascoyne DM, Heritage J, Hawkey PM, Turner A, van Klingeren B (1991) Molecular evolution of tetracycline-resistance plasmids carrying TetM found in Neisseria gonorrhoeae from different countries. J Antimicrob Chemother 28:173–183PubMedCrossRefGoogle Scholar
  108. 108.
    Pachulec E, Van der Does C (2010) Conjugative plasmids of Neisseria gonorrhoeae. PLoS One 5:e9962PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Thakur SD, Starnino S, Horsman GB, Levett PN, Dillon JR (2014) Unique combined penA/mtrR/porB mutations and NG-MAST strain types associated with ceftriaxone and cefixime MIC increases in a ‘susceptible’ Neisseria gonorrhoeae population. J Antimicrob Chemother 69:1510–1516PubMedCrossRefGoogle Scholar
  110. 110.
    Whiley DM, Jacobsson S, Tapsall JW, Nissen MD, Sloots TP, Unemo M (2010) Alterations of the pilQ gene in Neisseria gonorrhoeae are unlikely contributors to decreased susceptibility to ceftriaxone and cefixime in clinical gonococcal strains. J Antimicrob Chemother 65:2543–2547PubMedCrossRefGoogle Scholar
  111. 111.
    Hu M, Nandi S, Davies C, Nicholas RA (2005) High-level chromosomally mediated tetracycline resistance in Neisseria gonorrhoeae results from a point mutation in the rpsJ gene encoding ribosomal protein S10 in combination with the mtrR and penB resistance determinants. Antimicrob Agents Chemother 49:4327–4334PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hess D, Wu A, Golparian D, Esmaili S, Pandori W, Sena E et al (2012) Genome sequencing of a Neisseria gonorrhoeae isolate of a successful international clone with decreased susceptibility and resistance to extended-spectrum cephalosporins. Antimicrob Agents Chemother 56:5633–5641PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Su X, Jiang F, Qimuge Dai X, Sun H, Ye S (2007) Surveillance of antimicrobial susceptibilities in Neisseria gonorrhoeae in Nanjing, China, 1999–2006. Sex Transm Dis 34:995–999PubMedGoogle Scholar
  114. 114.
    Turner A, Gough KR, Leeming JP (1999) Molecular epidemiology of tetM genes in Neisseria gonorrhoeae. Sex Transm Infect 75:60–66PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Alam MA, Chowdhury ZU, Chowdhury AH, Rahman M (2012) Epidemic plasmids in Neisseria gonorrhoeae isolated from high-risk population in Bangladesh. Mymensingh Med J 21:220–225PubMedGoogle Scholar
  116. 116.
    Dillon JA, Li H, Sealy J, Ruben M, Prabhakar P, Caribbean GASP Network Gonococcal Antimicrobial Surveillance Program (2001) Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from three Caribbean countries: Trinidad, Guyana, and St. Vincent. Sex Transm Dis 28:508–514PubMedCrossRefGoogle Scholar
  117. 117.
    Dillon JA, Rubabaza JP, Benzaken AS, Sardinha JC, Li H, Bandeira MG et al (2001) Reduced susceptibility to azithromycin and high percentages of penicillin and tetracycline resistance in Neisseria gonorrhoeae isolates from Manaus, Brazil, 1998. Sex Transm Dis 28:521–526PubMedCrossRefGoogle Scholar
  118. 118.
    Mlynarczyk-Bonikowska B, Kujawa M, Malejczyk M, Majewski S, Mlynarczyk G (2016) Plasmid-mediated resistance to tetracyclines among Neisseria gonorrhoeae strains isolated in Poland in the period 2012–2013. Post Dermatol Alergol 33:475–479CrossRefGoogle Scholar
  119. 119.
    Horn NN, Kresken M, Körber-Irrgang B, Göttig S, Wichelhaus C, Wichelhaus TA et al (2014) Antimicrobial susceptibility and molecular epidemiology of Neisseria gonorrhoeae in Germany. Int J Med Microbiol 304:586–591PubMedCrossRefGoogle Scholar
  120. 120.
    Lebedzeu F, Golparian D, Titov L, Pankratava N, Glazkova S, Shimanskaya I, Charniakova N, Lukyanau A, Domeika M, Unemo M (2015) Antimicrobial susceptibility/resistance and NG-MAST characterization of Neisseria gonorrhoeae in Belarus, eastern Europe, 2010–2013. BMC Infect Dis 15:29PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Ashford WA, Potts DW, Adams HJ, English JC, Johnson SR, Biddle JW et al (1981) Spectinomycin-resistant penicillinase producing Neisseria gonorrhoeae. Lancet 2:1035–1037PubMedCrossRefGoogle Scholar
  122. 122.
    Ison CA, Littleton K, Shannon KP (1983) Spectinomycin resistant gonococci. Br Med J 287:1827–1829CrossRefGoogle Scholar
  123. 123.
    Easmon CS, Forster GE, Walker GD, Ison CA, Harris JR, Munday PE (1984) Spectinomycin as initial treatment for gonorrhoea. Br Med J 289:1032–1034CrossRefGoogle Scholar
  124. 124.
    Judson FN, Ehret JM, Handsfield HH (1985) Comparative study of ceftriaxone and spectinomycin for treatment of pharyngeal and anorectal gonorrhea. JAMA 253:1417–1419PubMedCrossRefGoogle Scholar
  125. 125.
    Starnino S, GASP-LAC Working Group, Galarza P, Carvallo ME, Benzaken AS, Ballesteros AM et al (2012) Retrospective analysis of antimicrobial susceptibility trends (2000–2009) in Neisseria gonorrhoeae isolates from countries in Latin America and the Caribbean shows evolving resistance to ciprofloxacin, azithromycin and decreased susceptibility to ceftriaxone. Sex Transm Dis 39:813–821PubMedCrossRefGoogle Scholar
  126. 126.
    Ilina EN, Malakhova MV, Bodoev IN, Oparina NY, Filimonova AV, Govorun VM (2013) Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae. Front Microbiol 4:186PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Unemo M, Golparian D, Skogen V, Olsen AO, Moi H, Syversen G et al (2013) Neisseria gonorrhoeae strain with high-level resistance to spectinomycin due to a novel resistance mechanism (mutated ribosomal protein S5) verified in Norway. Antimicrob Agents Chemother 57:1057–1061PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Nabu S, Lawung R, Isarankura-Na-Ayudhya P, Isarankura-Na-Ayudhya C, Roytrakul S, Prachayasittikul V (2014) Reference map and comparative proteomic analysis of Neisseria gonorrhoeae displaying high resistance against spectinomycin. J Med Microbiol 63:371–385PubMedCrossRefGoogle Scholar
  129. 129.
    Unemo M, Shafer WM (2014) Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 27:587–613PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Diagnostics of Sexually Transmitted DiseasesMedical University of WarsawWarsawPoland
  2. 2.Department of Medical MicrobiologyMedical University of WarsawWarsawPoland
  3. 3.Department of Dermatology and VenereologyMedical University of WarsawWarsawPoland

Personalised recommendations