Advertisement

Differential interferon gene expression in bronchiolitis caused by respiratory syncytial virus-A genotype ON1

  • Alessandra PierangeliEmail author
  • Agnese Viscido
  • Camilla Bitossi
  • Federica Frasca
  • Massimo Gentile
  • Giuseppe Oliveto
  • Antonella Frassanito
  • Raffaella Nenna
  • Fabio Midulla
  • Carolina Scagnolari
Original Investigation

Abstract

Bronchiolitis severity is determined by a complex interaction among viral replication and antiviral immunity. The current respiratory syncytial virus (RSV)-A, genotype ON1 demonstrated a high replicative capacity but seemed to be clinically less severe than the previously circulating RSV-A, NA1. To learn insights about ON1 innate immune response, we analyzed expression levels of type I/III interferon (IFN)-related genes in the respiratory mucosa of infants with RSV bronchiolitis. We enrolled RSV-positive bronchiolitis patients over 12 epidemic seasons at a university hospital in Rome. From nasopharyngeal washings’ cells (46 positive to NA1, 47 to ON1 and 28 to RSV-B, genotype BA), the mRNA copy number of the type III IFN receptor (IFNLR1 and IL10RB subunits), and of the type I/III IFN-stimulated genes, MxA and ISG56, was calculated using the threshold cycle relative quantification method with respect to an invariant gene. Expression levels of type III IFN receptor subunits genes positively correlated to each other and did not differ in infants infected with different RSV genotypes. The ISGs levels also positively correlated between them but differed among groups. MxA levels were significantly higher in NA1-infected infants than in those with ON1 and BA; ISG56 expression was slightly higher in NA1 than in the other strains. Interestingly, a moderate negative correlation existed between viral load and both ISGs values in ON1-infected infants only. The reduced ISG levels elicited during infections with ON1 (and BA) may cause a weaker control of RSV replication and/or an inadequate host immune response which may impact the risk of respiratory sequelae.

Keywords

Respiratory syncytial virus Bronchiolitis Interferon IFN-stimulated genes 

Notes

Acknowledgements

We are grateful to all the clinical teams at the Umberto I Hospital (Sapienza University of Rome) for their contribution in the management of infants hospitalized for bronchiolitis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Sapienza University Hospital research and ethics committee approved the study. Informed consent was obtained from parents or guardians of all infants. The research was conducted in accordance with the 1964 Helsinki Declaration and its later amendments.

References

  1. 1.
    Griffiths C, Drews SJ, Marchant DJ (2017) Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev 30:277–319.  https://doi.org/10.1128/cmr.00010-16 CrossRefPubMedGoogle Scholar
  2. 2.
    Eshaghi A, Duvvuri VR, Lai R, Nadarajah JT, Li A, Patel SN, Low DE, Gubbay JB (2012) Genetic variability of human respiratory syncytial virus A strains circulating in Ontario: a novel genotype with a 72 nucleotide G gene duplication. PLoS One 7:e32807.  https://doi.org/10.1371/journal.pone.0032807 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pierangeli A, Trotta D, Scagnolari C, Ferreri ML, Nicolai A, Midulla F, Marinelli K, Antonelli G, Bagnarelli P (2014) Rapid spread of the novel respiratory syncytial virus A ON1 genotype, central Italy, 2011 to 2013. Euro Surveill 19:20843CrossRefPubMedGoogle Scholar
  4. 4.
    Midulla F, Nenna R, Scagnolari C, Petrarca L, Frassanito A, Viscido A, Arima S, Antonelli G, Pierangeli A (2019) How respiratory syncytial virus genotypes influence the clinical course in infants hospitalized for bronchiolitis. J Infect Dis 219:526–534.  https://doi.org/10.1093/infdis/jiy496 CrossRefPubMedGoogle Scholar
  5. 5.
    Trento A, Casas I, Calderón A, Garcia-Garcia ML, Calvo C, Perez-Breña P, Melero JA (2010) Ten years of global evolution of the human respiratory syncytial virus BA genotype with a 60-nucleotide duplication in the G protein gene. J Virol 84:7500–7512.  https://doi.org/10.1128/JVI.00345-10 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hotard AL, Laikhter E, Brooks K, Hartert TV, Moore ML (2015) Functional analysis of the 60-nucleotide duplication in the respiratory syncytial virus buenos aires strain attachment glycoprotein. J Virol 89:8258–8266.  https://doi.org/10.1128/JVI.01045-15 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nicholson EG, Schlegel C, Garofalo RP, Mehta R, Scheffler M, Mei M, Piedra PA (2016) Robust cytokine and chemokine response in nasopharyngeal secretions: association with decreased severity in children with physician diagnosed bronchiolitis. J Infect Dis 214:649–655.  https://doi.org/10.1093/infdis/jiw191 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Piedra FA, Mei M, Avadhanula V, Mehta R, Aideyan L, Garofalo RP, Piedra PA (2017) The interdependencies of viral load, the innate immune response, and clinical outcome in children presenting to the emergency department with respiratory syncytial virus-associated bronchiolitis. PLoS One 12:e0172953.  https://doi.org/10.1371/journal.pone.0172953 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Thwaites RS, Coates M, Ito K, Ghazaly M, Feather C, Abdulla F, Tunstall T, Jain P, Cass L, Rapeport G, Hansel TT, Nadel S, Openshaw P (2018) Reduced nasal viral load and IFN responses in infants with respiratory syncytial virus bronchiolitis and respiratory failure. Am J Respir Crit Care Med 198:1074–1084.  https://doi.org/10.1164/rccm.201712-2567OC CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stier MT, Peebles RS Jr (2018) Host and viral determinants of respiratory syncytial virus-induced airway mucus. Ann Am Thorac Soc 15:S205–S209.  https://doi.org/10.1513/AnnalsATS.201806-380AW CrossRefPubMedGoogle Scholar
  11. 11.
    Villenave R, Broadbent L, Douglas I, Lyons JD, Coyle PV, Teng MN, Tripp RA, Heaney LG, Shields MD, Power UF (2015) Induction and antagonism of antiviral responses in respiratory syncytial virus-infected pediatric airway epithelium. J Virol 89:12309–12318.  https://doi.org/10.1128/JVI.02119-15 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hillyer P, Mane VP, Chen A, Dos Santos MB, Schramm LM, Shepard RE, Luongo C, Le Nouën C, Huang L, Yan L, Buchholz UJ, Jubin RG, Collins PL, Rabin RL (2017) Respiratory syncytial virus infection induces a subset of types I and III interferons in human dendritic cells. Virology 504:63–72.  https://doi.org/10.1016/j.virol.2017.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wells AI, Coyne CB (2018) Type III interferons in antiviral defenses at barrier surfaces. Trends Immunol 39:848–858.  https://doi.org/10.1016/j.it.2018.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pierangeli A, Statzu M, Nenna R, Santinelli L, Petrarca L, Frassanito A, Gentile M, Antonelli G, Midulla F, Scagnolari C (2018) Interferon lambda receptor 1 (IFNL1R) transcript is highly expressed in rhinovirus bronchiolitis and correlates with disease severity. J Clin Virol 102:101–109.  https://doi.org/10.1016/j.jcv.2018.03.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Barik S (2013) Respiratory syncytial virus mechanisms to interfere with type 1 interferons. Curr Top Microbiol Immunol 372:173–191.  https://doi.org/10.1007/978-3-642-38919-1_9 CrossRefPubMedGoogle Scholar
  16. 16.
    Scagnolari C, Midulla F, Selvaggi C, Monteleone K, Bonci E, Papoff P, Cangiano G, Di Marco P, Moretti C, Pierangeli A, Antonelli G (2012) Evaluation of viral load in infants hospitalized with bronchiolitis caused by respiratory syncytial virus. Med Microbiol Immunol 201:311–317.  https://doi.org/10.1007/s00430-012-0233-6 CrossRefPubMedGoogle Scholar
  17. 17.
    Selvaggi C, Pierangeli A, Fabiani M, Spano L, Nicolai A, Papoff P, Moretti C, Midulla F, Antonelli G, Scagnolari C (2014) Interferon lambda 1–3 expression in infants hospitalized for RSV or HRV associated bronchiolitis. J Infect 68:467–477.  https://doi.org/10.1016/j.jinf.2013.12.010 CrossRefPubMedGoogle Scholar
  18. 18.
    van den Kieboom CH, Ahout IM, Zomer A, Brand KH, de Groot R, Ferwerda G, de Jonge MI (2015) Nasopharyngeal gene expression, a novel approach to study the course of respiratory syncytial virus infection. Eur Respir J 45:718–725.  https://doi.org/10.1183/09031936.00085614 CrossRefPubMedGoogle Scholar
  19. 19.
    Turi KN, Shankar J, Anderson LJ, Rajan D, Gaston K, Gebretsadik T, Das SR, Stone C, Larkin EK, Rosas-Salazar C, Brunwasser SM, Moore ML, Peebles RS Jr, Hartert TV (2018) Infant viral respiratory infection nasal immune-response patterns and their association with subsequent childhood recurrent wheeze. Am J Respir Crit Care Med 198:1064–1073.  https://doi.org/10.1164/rccm.201711-2348OC CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Stokes KL, Chi MH, Sakamoto K, Newcomb DC, Currier MG, Huckabee MM, Lee S, Goleniewska K, Pretto C, Williams JV, Hotard A, Sherrill TP, Peebles RS Jr, Moore ML (2011) Differential pathogenesis of respiratory syncytial virus clinical isolates in BALB/c mice. J Virol 85:5782–5793.  https://doi.org/10.1128/JVI.01693-10 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Levitz R, Wattier R, Phillips P, Solomon A, Lawler J, Lazar I, Weibel C, Kahn JS (2012) Induction of IL-6 and CCL5 (RANTES) in human respiratory epithelial (A549) cells by clinical isolates of respiratory syncytial virus is strain specific. Virol J 9:190.  https://doi.org/10.1186/1743-422X-9-190 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Levitz R, Gao Y, Dozmorov I, Song R, Wakeland EK, Kahn JS (2017) Distinct patterns of innate immune activation by clinical isolates of respiratory syncytial virus. PLoS One 12:e0184318.  https://doi.org/10.1371/journal.pone.0184318 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hillyer P, Shepard R, Uehling M, Krenz M, Sheikh F, Thayer KR, Huang L, Yan L, Panda D, Luongo C, Buchholz UJ, Collins PL, Donnelly RP, Rabin RL (2018) Differential responses by human respiratory epithelial cell lines to respiratory syncytial virus reflect distinct patterns of infection control. J Virol 92(15):e02202-17.  https://doi.org/10.1128/JVI.02202-17 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pierangeli A, Gentile M, Di Marco P, Pagnotti P, Scagnolari C, Trombetti S, Lo Russo L, Tromba V, Moretti C, Midulla F, Antonelli G (2007) Detection and typing by molecular techniques of respiratory viruses in children hospitalized for acute respiratory infection in Rome, Italy. J Med Virol 79:463–468.  https://doi.org/10.1002/jmv.20832 CrossRefPubMedGoogle Scholar
  25. 25.
    Makris S, Paulsen M, Johansson C (2017) Type I interferons as regulators of lung inflammation. Front Immunol 8:259.  https://doi.org/10.3389/fimmu.2017.00259 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Do LAH, Pellet J, van Doorn HR, Tran AT, Nguyen BH, Tran TTL, Tran QH, Vo QB, Tran Dac NA, Trinh HN, Nguyen TTH, Le Binh BT, Nguyen HMK, Nguyen MT, Thai QT, Vo TV, Ngo NQM, Dang TKH, Cao NH, Tran TV, Ho LV, De Meulder B, Auffray C, Hofstra JJ, Farrar J, Bryant JE, de Jong M, Hibberd ML (2017) Host transcription profile in nasal epithelium and whole blood of hospitalized children under 2 years of age with respiratory syncytial virus infection. J Infect Dis 217:134–146.  https://doi.org/10.1093/infdis/jix519 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ramilo O, Mejias A (2018) Respiratory syncytial virus-induced acute disease severity and long-term wheezing. Uncovering the unexpected. Am J Respir Crit Care Med 198:984–986.  https://doi.org/10.1164/rccm.201805-0908ED CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jordan WJ, Eskdale J, Srinivas S, Pekarek V, Kelner D, Rodia M, Gallagher G (2007) Human interferon lambda-1 (IFN-lambda1/IL-29) modulates the Th1/Th2 response. Genes Immun 8:254–261.  https://doi.org/10.1038/sj.gene.6364382 CrossRefPubMedGoogle Scholar
  29. 29.
    Hijano DR, Vu LD, Kauvar LM, Tripp RA, Polack FP, Cormier SA (2019) Role of type I interferon (IFN) in the respiratory syncytial virus (RSV) immune response and disease severity. Front Immunol 10:566 (Epub 2019 Mar 26)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fedele G, Schiavoni I, Nenna R, Pierangeli A, Frassanito A, Leone P, Petrarca L, Scagnolari C, Midulla F (2018) Analysis of the immune response in infants hospitalized with viral bronchiolitis shows different Th1/Th2 profiles associated with respiratory syncytial virus and human rhinovirus. Pediatr Allergy Immunol 29:555–557.  https://doi.org/10.1111/pai.12919 CrossRefPubMedGoogle Scholar
  31. 31.
    Midulla F, Pierangeli A, Cangiano G, Bonci E, Salvadei S, Scagnolari C, Moretti C, Antonelli G, Ferro V, Papoff P (2012) Rhinovirus bronchiolitis and recurrent wheezing: 1-year follow-up. Eur Respir J 39:396–402.  https://doi.org/10.1183/09031936.00188210 CrossRefPubMedGoogle Scholar
  32. 32.
    Midulla F, Nicolai A, Ferrara M, Gentile F, Pierangeli A, Bonci E, Scagnolari C, Moretti C, Antonelli G, Papoff P (2014) Recurrent wheezing 36 months after bronchiolitis is associated with rhinovirus infections and blood eosinophilia. Acta Paediatr 103:1094–1099.  https://doi.org/10.1111/apa.12720 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alessandra Pierangeli
    • 1
    Email author
  • Agnese Viscido
    • 1
  • Camilla Bitossi
    • 1
  • Federica Frasca
    • 1
  • Massimo Gentile
    • 1
  • Giuseppe Oliveto
    • 1
  • Antonella Frassanito
    • 2
  • Raffaella Nenna
    • 2
  • Fabio Midulla
    • 2
  • Carolina Scagnolari
    • 1
  1. 1.Virology Laboratory, Department of Molecular MedicineAffiliated to Pasteur Institute Italy, Cenci Bolognetti FoundationRomeItaly
  2. 2.Department of Pediatrics“Sapienza” UniversityRomeItaly

Personalised recommendations