Advertisement

Impact of cytomegalovirus load on host response to sepsis

  • Thomas Marandu
  • Michael Dombek
  • Charles H. CookEmail author
Review
  • 49 Downloads

Abstract

There is a decades old association between cytomegalovirus reactivation and sepsis in immune-competent hosts. Much has been learned about this relationship, which has been described as bidirectional, meaning that the virus incites and is incited by the host’s inflammatory response. More recent work has suggested that chronic viral infection leaves the host with exaggerated immunity to bacterial infections. In this review, the relationship between CMV and host responses to sepsis are reviewed, with particular attention to the impact that tissue viral load contributes to this phenomenon.

Keywords

Cytomegalovirus reactivation Sepsis Viral load 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

References

  1. 1.
    Bordes J, Maslin J, Prunet B, d'Aranda E, Lacroix G, Goutorbe P, Dantzer E, Meaudre E (2011) Cytomegalovirus infection in severe burn patients monitoring by real-time polymerase chain reaction: a prospective study. Burns 37(3):434–439.  https://doi.org/10.1016/j.burns.2010.11.006 CrossRefPubMedGoogle Scholar
  2. 2.
    Heininger A, Haeberle H, Fischer I, Beck R, Riessen R, Rohde F, Meisner C, Jahn G, Koenigsrainer A, Unertl K, Hamprecht K (2011) Cytomegalovirus reactivation and associated outcome of critically ill patients with severe sepsis. Crit Care 15(2):R77.  https://doi.org/10.1186/cc10069 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Heininger A, Jahn G, Engel C, Notheisen T, Unertl K, Hamprecht K (2001) Human cytomegalovirus infections in nonimmunosuppressed critically ill patients. Crit Care Med 29(3):541–547CrossRefPubMedGoogle Scholar
  4. 4.
    Chilet M, Aguilar G, Benet I, Belda J, Tormo N, Carbonell JA, Clari MA, Costa E, Navarro D (2010) Virological and immunological features of active cytomegalovirus infection in nonimmunosuppressed patients in a surgical and trauma intensive care unit. J Med Virol 82(8):1384–1391.  https://doi.org/10.1002/jmv.21825 CrossRefPubMedGoogle Scholar
  5. 5.
    Ziemann M, Sedemund-Adib B, Reiland P, Schmucker P, Hennig H (2008) Increased mortality in long-term intensive care patients with active cytomegalovirus infection. Crit Care Med 36(12):3145–3150CrossRefPubMedGoogle Scholar
  6. 6.
    Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, Gibran NS, Huang M-L, Santo Hayes TK, Corey L, Boeckh M (2008) Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 300(4):413–422.  https://doi.org/10.1001/jama.300.4.413 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    von Muller L, Klemm A, Weiss M, Schneider M, Suger-Wiedeck H, Durmus N, Hampl W, Mertens T (2006) Active cytomegalovirus infection in patients with septic shock. Emerg Infect Dis 12(10):1517–1522CrossRefGoogle Scholar
  8. 8.
    Kutza AS, Muhl E, Hackstein H, Kirchner H, Bein G (1998) High incidence of active cytomegalovirus infection among septic patients. Clin Infect Dis 26(5):1076–1082CrossRefPubMedGoogle Scholar
  9. 9.
    Papazian L, Fraisse A, Garbe L, Zandotti C, Thomas P, Saux P, Pierrin G, Gouin F (1996) Cytomegalovirus. An unexpected cause of ventilator-associated pneumonia. Anesthesiology 84(2):280–287CrossRefPubMedGoogle Scholar
  10. 10.
    Domart Y, Trouillet JL, Fagon JY, Chastre J, Brun-Vezinet F, Gibert C (1990) Incidence and morbidity of cytomegaloviral infection in patients with mediastinitis following cardiac surgery [see comments]. Chest 97(1):18–22CrossRefPubMedGoogle Scholar
  11. 11.
    Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B, Brownstein BH, Pachot A, Brooks TL, Deych E, Shannon WD, Green JM, Storch GA, Hotchkiss RS (2014) Reactivation of multiple viruses in patients with sepsis. PLoS ONE 9(6):e98819.  https://doi.org/10.1371/journal.pone.0098819 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Coisel Y, Bousbia S, Forel J-M, Hraiech S, Lascola B, Roch A, Zandotti C, Million M, Jaber S, Raoult D, Papazian L (2012) Cytomegalovirus and herpes simplex virus effect on the prognosis of mechanically ventilated patients suspected to have ventilator-associated pneumonia. PLoS ONE 7(12):e51340.  https://doi.org/10.1371/journal.pone.0051340 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Smith CA, Conroy LT, Pollock M, Ruddy J, Binning A, McCruden EA (2010) Detection of herpes viruses in respiratory secretions of patients undergoing artificial ventilation. J Med Virol 82(8):1406–1409.  https://doi.org/10.1002/jmv.21794 CrossRefPubMedGoogle Scholar
  14. 14.
    Jaber S, Chanques G, Borry J, Souche B, Verdier R, Perrigault P-F, Eledjam J-J (2005) Cytomegalovirus infection in critically Ill patients: associated factors and consequences. Chest 127(1):233–241CrossRefPubMedGoogle Scholar
  15. 15.
    Friedrichs I, Bingold T, Keppler OT, Pullmann B, Reinheimer C, Berger A (2013) Detection of herpesvirus EBV DNA in the lower respiratory tract of ICU patients: a marker of infection of the lower respiratory tract? Med Microbiol Immunol 202(6):431–436.  https://doi.org/10.1007/s00430-013-0306-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Chiche L, Forel JM, Roch A, Guervilly C, Pauly V, Allardet-Servent J, Gainnier M, Zandotti C, Papazian L (2009) Active Cytomegalovirus infection is common in mechanically ventilated medical intensive care unit patients. Crit Care Med 37(6):1850–1857CrossRefPubMedGoogle Scholar
  17. 17.
    Cook CH, Martin LC, Yenchar JK, Lahm MC, McGuinness B, Davies EA, Ferguson RM (2003) Occult herpes family viral infections are endemic in critically ill surgical patients. Crit Care Med 31(7):1923–1929CrossRefPubMedGoogle Scholar
  18. 18.
    Cook CH, Yenchar JK, Kraner TO, Davies EA, Ferguson RM (1998) Occult herpes family viruses may increase mortality in critically ill surgical patients. Am J Surg 176(4):357–360CrossRefPubMedGoogle Scholar
  19. 19.
    Desachy A, Ranger-Rogez S, Francois B, Venot C, Traccard I, Gastinne H, Denis F, Vignon P (2001) Reactivation of human herpesvirus type 6 in multiple organ failure syndrome. Clin Infect Dis 32(2):197–203CrossRefPubMedGoogle Scholar
  20. 20.
    Razonable RR, Fanning C, Brown RA, Espy MJ, Rivero A, Wilson J, Kremers W, Smith TF, Paya CV (2002) Selective reactivation of human herpesvirus 6 variant a occurs in critically ill immunocompetent hosts [see comment]. J Infect Dis 185(1):110–113CrossRefPubMedGoogle Scholar
  21. 21.
    Stephan F, Meharzi D, Ricci S, Fajac A, Clergue F, Bernaudin JF (1996) Evaluation by polymerase chain reaction of cytomegalovirus reactivation in intensive care patients under mechanical ventilation. Intensive Care Med 22(11):1244–1249CrossRefPubMedGoogle Scholar
  22. 22.
    Vogel T, Vadonis R, Kuehn J, Eing BR, Senninger N, Haier J (2008) Viral reactivation is not related to septic complications after major surgical resections. APMIS 116(4):292–301CrossRefPubMedGoogle Scholar
  23. 23.
    Cinel G, Pekcan S, Özçelik U, Alp A, Yalçın E, Doğru Ersöz D, Kiper N (2014) Cytomegalovirus infection in immunocompetent wheezy infants: the diagnostic value of CMV PCR in bronchoalveolar lavage fluid. J Clin Pharm Ther 39(4):399–403.  https://doi.org/10.1111/jcpt.12169 CrossRefPubMedGoogle Scholar
  24. 24.
    Singh N, Inoue M, Osawa R, Wagener MM, Shinohara ML (2017) Inflammasome expression and cytomegalovirus viremia in critically ill patients with sepsis. J Clin Virol 93:8–14.  https://doi.org/10.1016/j.jcv.2017.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ong DY, Spitoni C, Klein Klouwenberg PC, Verduyn Lunel F, Frencken J, Schultz M, van der Poll T, Kesecioglu J, Bonten MM, Cremer O (2016) Cytomegalovirus reactivation and mortality in patients with acute respiratory distress syndrome. Intensive Care Med 42(3):333–341.  https://doi.org/10.1007/s00134-015-4071-z CrossRefPubMedGoogle Scholar
  26. 26.
    Castón JJ, Cantisán S, González-Gasca F, Páez-Vega A, Abdel-Hadi H, Illescas S, Alonso G, Torre-Cisneros J (2016) Interferon-γ production by CMV-specific CD8+ T lymphocytes provides protection against cytomegalovirus reactivation in critically ill patients. Intensive Care Med 42(1):46–53.  https://doi.org/10.1007/s00134-015-4077-6 CrossRefPubMedGoogle Scholar
  27. 27.
    Frantzeskaki FG, Karampi ES, Kottaridi C, Alepaki M, Routsi C, Tzanela M, Vassiliadi DA, Douka E, Tsaousi S, Gennimata V, Ilias I, Nikitas N, Armaganidis A, Karakitsos P, Papaevangelou V, Dimopoulou I (2015) Cytomegalovirus reactivation in a general, nonimmunosuppressed intensive care unit population: incidence, risk factors, associations with organ dysfunction, and inflammatory biomarkers. J Crit Care 30(2):276–281.  https://doi.org/10.1016/j.jcrc.2014.10.002 CrossRefPubMedGoogle Scholar
  28. 28.
    Ong DSY, Bonten MJM, Spitoni C, Verduyn Lunel FM, Frencken JF, Horn J, Schultz MJ, van der Poll T, Klein Klouwenberg PMC, Cremer OL, Consortium ftMDaRSoS (2017) Epidemiology of multiple herpes viremia in previously immunocompetent patients with septic shock. Clin Infect Dis 64(9):1204–1210.  https://doi.org/10.1093/cid/cix120 CrossRefPubMedGoogle Scholar
  29. 29.
    Kalil AC, Florescu DF (2009) Prevalence and mortality associated with cytomegalovirus infections in non-immunosuppressed ICU patients. Crit Care Med 37(8):2350–2358CrossRefPubMedGoogle Scholar
  30. 30.
    Lachance P, Chen J, Featherstone R, Sligl WI (2017) Association between cytomegalovirus reactivation and clinical outcomes in immunocompetent critically ill patients: a systematic review and meta-analysis. Open Forum Infect Dis 4(2):ofx029.  https://doi.org/10.1093/ofid/ofx029 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mansfield SA, Cook CH (2017) Antiviral prophylaxis of cytomegalovirus reactivation in immune competent patients-the jury remains out. J Thorac Dis 9(8):2221–2223.  https://doi.org/10.21037/jtd.2017.06.130 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cowley NJ, Owen A, Shiels SC, Millar J, Woolley R, Ives N, Osman H, Moss P, Bion JF (2017) Safety and efficacy of antiviral therapy for prevention of cytomegalovirus reactivation in immunocompetent critically ill patients: a randomized clinical trial. JAMA Intern Med.  https://doi.org/10.1001/jamainternmed.2017.0895 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Limaye AP, Stapleton RD, Peng L, Gunn SR, Kimball LE, Hyzy R, Exline MC, Files DC, Morris PE, Frankel SK, Mikkelsen ME, Hite D, Enfield KB, Steingrub J, O'Brien J, Parsons PE, Cuschieri J, Wunderink RG, Hotchkin DL, Chen YQ, Rubenfeld GD, Boeckh M (2017) Effect of ganciclovir on IL-6 levels among cytomegalovirus-seropositive adults with critical illness: a randomized clinical trial. JAMA 318(8):731–740.  https://doi.org/10.1001/jama.2017.10569 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Seckert CK, Griessl M, Buttner JK, Freitag K, Lemmermann N, Hummel M, Liu XF, Abecassis M, Angulo A, Messerle M, Cook CH, Reddehase M (2013) Immune surveillance of cytomegalovirus latency and reactivation in murine models: link to memory inflation. In: Reddehase MJ (ed) Cytomegaloviruses. Caister Academic Press 1, Norfolk, pp 374–416Google Scholar
  35. 35.
    Dorsch-Hasler K, Keil GM, Weber F, Jasin M, Schaffner W, Koszinowski UH (1985) A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci USA 82(24):8325–8329CrossRefPubMedGoogle Scholar
  36. 36.
    Liu B, Stinski MF (1992) Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J Virol 66(7):4434–4444PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cornell TT, Wynn J, Shanley TP, Wheeler DS, Wong HR (2010) Mechanisms and regulation of the gene-expression response to sepsis. Pediatrics 125(6):1248–1258.  https://doi.org/10.1542/peds.2009-3274 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li Y, Alam HB (2011) Modulation of acetylation: creating a pro-survival and anti-inflammatory phenotype in lethal hemorrhagic and septic shock. J Biomed Biotechnol 2011:523481.  https://doi.org/10.1155/2011/523481 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Docke WD, Prosch S, Fietze E, Kimel V, Zuckermann H, Klug C, Syrbe U, Kruger DH, von Baehr R, Volk HD (1994) Cytomegalovirus reactivation and tumour necrosis factor. Lancet 343(8892):268–269CrossRefPubMedGoogle Scholar
  40. 40.
    Prosch S, Staak K, Stein J, Liebenthal C, Stamminger T, Volk HD, Kruger DH (1995) Stimulation of the human cytomegalovrus IE enhancer/promoter in HL-60 Cells by TNFalpha is mediated via induction of NF-kappaB. Virology 208(1):197–206CrossRefPubMedGoogle Scholar
  41. 41.
    Stein J, Volk HD, Liebenthal C, Kruger DH, Prosch S (1993) Tumour necrosis factor alpha stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J Gen Virol 74(11):2333–2338CrossRefPubMedGoogle Scholar
  42. 42.
    Kline JN, Hunninghake GM, He B, Monick MM, Hunninghake GW (1998) Synergistic activation of the human cytomegalovirus major immediate early promoter by prostaglandin E2 and cytokines. Exp Lung Res 24(1):3–14CrossRefPubMedGoogle Scholar
  43. 43.
    Hunninghake GW, Monick MM, Liu B, Stinski MF (1989) The promoter-regulatory region of the major immediate-early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. J Virol 63(7):3026–3033PubMedPubMedCentralGoogle Scholar
  44. 44.
    Laegreid A, Medvedev A, Nonstad U, Bombara MP, Ranges G, Sundan A, Espevik T (1994) Tumor necrosis factor receptor p75 mediates cell-specific activation of nuclear factor kappa B and induction of human cytomegalovirus enhancer. J Biol Chem 269(10):7785–7791PubMedGoogle Scholar
  45. 45.
    Cook C, Zhang X, McGuinness B, Lahm M, Sedmak D, Ferguson R (2002) Intra-abdominal bacterial infection reactivates latent pulmonary cytomegalovirus in immunocompetent mice. J Infect Dis 185:1395–1400CrossRefPubMedGoogle Scholar
  46. 46.
    Cook CH, Trgovcich J, Zimmerman PD, Zhang Y, Sedmak DD (2006) Lipopolysaccharide, tumor necrosis factor alpha, or interleukin-1{beta} triggers reactivation of latent cytomegalovirus in immunocompetent mice. J Virol 80(18):9151–9158CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hummel M, Zhang Z, Yan S, DePlaen I, Golia P, Varghese T, Thomas G, Abecassis MI (2001) Allogeneic transplantation induces expression of cytomegalovirus immediate-early genes in vivo: a model for reactivation from latency. J Virol 75(10):4814–4822CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Simon CO, Seckert CK, Dreis D, Reddehase MJ, Grzimek NKA (2005) Role for tumor necrosis factor alpha in murine cytomegalovirus transcriptional reactivation in latently infected lungs. J Virol 79(1):326–340CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Simon CO, Kuhnapfel B, Reddehase MJ, Grzimek NKA (2007) Murine cytomegalovirus major immediate-early enhancer region operating as a genetic switch in bidirectional gene pair transcription. J Virol 81(14):7805–7810.  https://doi.org/10.1128/jvi.02388-06 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Loser P, Jennings GS, Strauss M, Sandig V (1998) Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J Virol 72(1):180–190PubMedPubMedCentralGoogle Scholar
  51. 51.
    Murphy JC, Fischle W, Verdin E, Sinclair JH (2002) Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 21(5):1112–1120.  https://doi.org/10.1093/emboj/21.5.1112 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Reeves MB, MacAry PA, Lehner PJ, Sissons JGP, Sinclair JH (2005) Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci 102(11):4140–4145.  https://doi.org/10.1073/pnas.0408994102 CrossRefPubMedGoogle Scholar
  53. 53.
    Liu XF, Yan S, Abecassis M, Hummel M (2008) Establishment of murine cytomegalovirus latency in vivo is associated with changes in histone modifications and recruitment of transcriptional repressors to the major immediate-early promoter. J Virol 82(21):10922–10931.  https://doi.org/10.1128/jvi.00865-08 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hummel M, Yan S, Li Z, Varghese TK, Abecassis M (2007) Transcriptional reactivation of murine cytomegalovirus ie gene expression by 5-aza-2'-deoxycytidine and trichostatin A in latently infected cells despite lack of methylation of the major immediate-early promoter. J Gen Virol 88(4):1097–1102.  https://doi.org/10.1099/vir.0.82696-0 CrossRefPubMedGoogle Scholar
  55. 55.
    Dağ F, Dölken L, Holzki J, Drabig A, Weingärtner A, Schwerk J, Lienenklaus S, Conte I, Geffers R, Davenport C, Rand U, Köster M, Weiß S, Adler B, Wirth D, Messerle M, Hauser H, Čičin-Šain L (2014) Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency. PLoS Pathog 10(2):e1003962.  https://doi.org/10.1371/journal.ppat.1003962 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Simon CO, Holtappels R, Tervo H-M, Bohm V, Daubner T, Oehrlein-Karpi SA, Kuhnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NKA (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80(21):10436–10456CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kurz SK, Reddehase MJ (1999) Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J Virol 73(10):8612–8622PubMedPubMedCentralGoogle Scholar
  58. 58.
    Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS (2011) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA J Am Med Assoc 306(23):2594–2605.  https://doi.org/10.1001/jama.2011.1829 CrossRefGoogle Scholar
  59. 59.
    Hotchkiss RS, Nicholson DW (2006) Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 6(11):813–822CrossRefPubMedGoogle Scholar
  60. 60.
    Campbell J, Trgovcich J, Kincaid M, Zimmerman PD, Klenerman P, Sims S, Cook CH (2012) Transient CD8-memory contraction: a potential contributor to latent cytomegalovirus reactivation. J Leukoc Biol 92(5):933–937.  https://doi.org/10.1189/jlb.1211635 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE, Hui JJ, Chang KC, Osborne DF, Freeman BD, Cobb JP, Buchman TG, Karl IE (2001) Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 166(11):6952–6963CrossRefPubMedGoogle Scholar
  62. 62.
    Jonjic S, Pavic I, Polic B, Crnkovic I, Lucin P, Koszinowski UH (1994) Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med 179(5):1713–1717.  https://doi.org/10.1084/jem.179.5.1713 CrossRefPubMedGoogle Scholar
  63. 63.
    Krmpotić A, Podlech J, Reddehase MJ, Britt WJ, Jonjić S (2019) Role of antibodies in confining cytomegalovirus after reactivation from latency: three decades’ résumé. Med Microbiol Immunol.  https://doi.org/10.1007/s00430-019-00600-1 CrossRefPubMedGoogle Scholar
  64. 64.
    Holtappels A, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L10 memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74(24):11495–11503CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202(5):673–685.  https://doi.org/10.1084/jem.20050882 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Vescovini R, Biasini C, Fagnoni FF, Telera AR, Zanlari L, Pedrazzoni M, Bucci L, Monti D, Medici MC, Chezzi C, Franceschi C, Sansoni P (2007) Massive load of functional effector CD4+ and CD8+ T cells against cytomegalovirus in very old subjects. J Immunol 179(6):4283–4291CrossRefPubMedGoogle Scholar
  67. 67.
    Seckert CK, Griessl M, Buttner JK, Scheller S, Simon CO, Kropp KA, Renzaho A, Kuhnapfel B, Grzimek NK, Reddehase MJ (2012) Viral latency drives 'memory inflation': a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol.  https://doi.org/10.1007/s00430-012-0273-y CrossRefPubMedGoogle Scholar
  68. 68.
    Snyder CM, Cho KS, Bonnett EL, van Dommelen S, Shellam GR, Hill AB (2008) Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29(4):650–659CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Baars PA, Sierro S, Arens R, Tesselaar K, Hooibrink B, Klenerman P, van Lier RAW (2005) Properties of murine CD8+CD27 T cells. Eur J Immunol 35(11):3131–3141CrossRefPubMedGoogle Scholar
  70. 70.
    Deutschman CS, Konstantinides FN, Tsai M, Simmons RL, Cerra FB (1987) Physiology and metabolism in isolated viral septicemia: further evidence of an organism-independent, Host-Dependent Response. Arch Surg 122(1):21–25.  https://doi.org/10.1001/archsurg.1987.01400130027003 CrossRefPubMedGoogle Scholar
  71. 71.
    Cook CH, Zhang Y, Sedmak DD, Martin LC, Jewell S, Ferguson RM (2006) Pulmonary cytomegalovirus reactivation causes pathology in immunocompetent mice. Crit Care Med 34(3):842–849CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HW (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447(7142):326–329CrossRefPubMedGoogle Scholar
  73. 73.
    Cook CH, Trgovcich J (2011) Cytomegalovirus reactivation in critically ill immunocompetent hosts: a decade of progress and remaining challenges. Antiviral Res 90(3):151–159.  https://doi.org/10.1016/j.antiviral.2011.03.179 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Welsh RM, Selin LK (2002) No one is naive: the significance of heterologous T-cell immunity. Nat Rev Immunol 2(6):417–426CrossRefPubMedGoogle Scholar
  75. 75.
    Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1222878110 CrossRefPubMedGoogle Scholar
  76. 76.
    Mansfield S, Grießl M, Gutknecht M, Cook C (2015) Sepsis and cytomegalovirus: foes or conspirators? Med Microbiol Immunol.  https://doi.org/10.1007/s00430-015-0407-0 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, Thompson EA, Fraser KA, Rosato PC, Filali-Mouhim A, Sekaly RP, Jenkins MK, Vezys V, Haining WN, Jameson SC, Masopust D (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532(7600):512–516.  https://doi.org/10.1038/nature17655 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Jergovic M, Contreras NA, Nikolich-Zugich J (2019) Impact of CMV upon immune aging: facts and fiction. Med Microbiol Immunol.  https://doi.org/10.1007/s00430-019-00605-w CrossRefGoogle Scholar
  79. 79.
    Soderberg-Naucler C, Fish KN, Nelson JA (1997) Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91(1):119–126CrossRefPubMedGoogle Scholar
  80. 80.
    Larsson S, Soderberg-Naucler C, Wang FZ, Moller E (1998) Cytomegalovirus DNA can be detected in peripheral blood mononuclear cells from all seropositive and most seronegative healthy blood donors over time. Transfusion 38(3):271–278CrossRefPubMedGoogle Scholar
  81. 81.
    Slobedman B, Mocarski ES (1999) Quantitative analysis of latent human cytomegalovirus. J Virol 73(6):4806–4812PubMedPubMedCentralGoogle Scholar
  82. 82.
    Dioverti MV, Razonable RR (2015) Clinical utility of cytomegalovirus viral load in solid organ transplant recipients. Curr Opin Infect Dis 28(4):317–322.  https://doi.org/10.1097/QCO.0000000000000173 CrossRefPubMedGoogle Scholar
  83. 83.
    Reddehase M, Lemmermann N (2019) Cellular reservoirs of latent cytomegaloviruses. Med Microbiol Immunol.  https://doi.org/10.1007/s00430-019-00592-y CrossRefPubMedGoogle Scholar
  84. 84.
    Reddehase MJ, Balthesen M, Rapp M, Jonjic S, Pavic I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179(1):185–193CrossRefPubMedGoogle Scholar
  85. 85.
    Adler SP, Reddehase M (2019) Pediatric roots of cytomegalovirus recurrence and memory inflation in the elderly. Med Microbiol Immunol.  https://doi.org/10.1007/s00430-019-00609-6 CrossRefPubMedGoogle Scholar
  86. 86.
    Redeker A, Welten SPM, Arens R (2014) Viral inoculum dose impacts memory T-cell inflation. Eur J Immunol 44(4):1046–1057.  https://doi.org/10.1002/eji.201343946 CrossRefPubMedGoogle Scholar
  87. 87.
    Trgovcich J, Kincaid M, Thomas A, Griessl M, Zimmerman P, Dwivedi V, Bergdall V, Klenerman P, Cook CH (2016) Cytomegalovirus reinfections stimulate CD8 T-memory inflation. PLoS ONE 11(11):e0167097.  https://doi.org/10.1371/journal.pone.0167097 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Redeker A, Remmerswaal EBM, van der Gracht ETI, Welten SPM, Höllt T, Koning F, Cicin-Sain L, Nikolich-Žugich J, ten Berge IJM, van Lier RAW, van Unen V, Arens R (2018) The contribution of cytomegalovirus infection to immune senescence is set by the infectious dose. Front Immunol 8(1953):1–15.  https://doi.org/10.3389/fimmu.2017.01953 CrossRefGoogle Scholar
  89. 89.
    Mansfield SA, Dwivedi V, Elgharably H, Griessl M, Zimmerman PD, Limaye AP, Cook CH (2019) Cytomegalovirus immunoglobulin-G titers do not predict reactivation risk in immunocompetent hosts. J Med Virol.  https://doi.org/10.1002/jmv.25389 CrossRefPubMedGoogle Scholar
  90. 90.
    Booth TW, Scalzo AA, Carrello C, Lyons PA, Farrell HE, Singleton GR, Shellam GR (1993) Molecular and biological characterization of new strains of murine cytomegalovirus isolated from wild mice. Arch Virol 132(1–2):209–220CrossRefPubMedGoogle Scholar
  91. 91.
    Kotsimbos ATC, Sinickas V, Glare EM, Esmore DS, Snell GI, Walters EH, Williams TJ (1997) Quantitative detection of human cytomegalovirus DNA in lung transplant recipients. Am J Respir Crit Care Med 156(4):1241–1246CrossRefPubMedGoogle Scholar
  92. 92.
    Thomas AC, Forster MR, Bickerstaff AA, Zimmerman PD, Wing BA, Trgovcich J, Bergdall VK, Klenerman P, Cook CH (2010) Occult cytomegalovirus in vivarium-housed mice may influence transplant allograft acceptance. Transpl Immunol 23(1–2):86–91CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Stowe RP, Kozlova EV, Yetman DL, Walling DM, Goodwin JS, Glaser R (2007) Chronic herpesvirus reactivation occurs in aging. Exp Gerontol 42(6):563–570.  https://doi.org/10.1016/j.exger.2007.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Parry HM, Zuo J, Frumento G, Mirajkar N, Inman C, Edwards E, Griffiths M, Pratt G, Moss P (2016) Cytomegalovirus viral load within blood increases markedly in healthy people over the age of 70 years. Immun Ageing 13(1):1.  https://doi.org/10.1186/s12979-015-0056-6 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Leng S, Qu T, Semba R, Li H, Yao X, Nilles T, Yang X, Manwani B, Walston J, Ferrucci L, Fried L, Margolick J, Bream J (2011) Relationship between cytomegalovirus (CMV) IgG serology, detectable CMV DNA in peripheral monocytes, and CMV pp65&495–503-specific CD8+ T cells in older adults. Age 33(4):607–614.  https://doi.org/10.1007/s11357-011-9205-9 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Leng SX, Li H, Xue QL, Tian J, Yang X, Ferrucci L, Fedarko N, Fried LP, Semba RD (2011) Association of detectable cytomegalovirus (CMV) DNA in monocytes rather than positive CMV IgG serology with elevated neopterin levels in community-dwelling older adults. Exp Gerontol 46(8):679–684.  https://doi.org/10.1016/j.exger.2011.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Toro AI, Ossa J (1996) PCR activity of CMV in healthy CMV-seropositive individuals: does latency need redefinition? Res Virol 147(4):233–238CrossRefPubMedGoogle Scholar
  98. 98.
    Robert FP, Hutto C (1986) Group day care and cytomegaloviral infections of mothers and children. Rev Infect Dis 8(4):599–605CrossRefGoogle Scholar
  99. 99.
    Zanghellini F, Boppana SB, Pass RF, Griffiths PD, Emery VC (1999) Asymptomatic primary cytomegalovirus infection: virologic and immunologic features. J Infect Dis 180(3):702–707.  https://doi.org/10.1086/314939 CrossRefPubMedGoogle Scholar
  100. 100.
    Arora N, Novak Z, Fowler KB, Boppana SB, Ross SA (2010) Cytomegalovirus viruria and DNAemia in healthy seropositive women. J Infect Dis 202(12):1800–1803.  https://doi.org/10.1086/657412 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Mehta SK, Stowe RP, Feiveson AH, Tyring SK, Pierson DL (2000) Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 182(6):1761–1764.  https://doi.org/10.1086/317624 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thomas Marandu
    • 1
    • 2
  • Michael Dombek
    • 1
  • Charles H. Cook
    • 1
    Email author
  1. 1.Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  2. 2.University of Dar Es Salaam, Mbeya College of Health and Allied SciencesMbeyaTanzania

Personalised recommendations