Advertisement

Increased SAMHD1 transcript expression correlates with interferon-related genes in HIV-1-infected patients

  • Maura Statzu
  • Letizia Santinelli
  • Agnese Viscido
  • Claudia Pinacchio
  • Giancarlo Ceccarelli
  • Claudia Rotondo
  • Giuseppe Corano Scheri
  • Ivano Mezzaroma
  • Ombretta Turriziani
  • Guido Antonelli
  • Gabriella d’Ettorre
  • Carolina ScagnolariEmail author
Original Investigation
  • 86 Downloads

Abstract

Purpose

To investigate the contribution of SAMHD1 to HIV-1 infection in vivo and its relationship with IFN response, the expression of SAMHD1 and IFN-related pathways was evaluated in HIV-1-infected patients.

Methods

Peripheral blood mononuclear cells (PBMC) from 388 HIV-1-infected patients, both therapy naïve (n = 92) and long-term HAART treated (n = 296), and from 100 gender and age-matched healthy individuals were examined. CD4+ T cells, CD14+ monocytes and gut biopsies were also analyzed in HIV-1-infected subjects on suppressive antiretroviral therapy. Gene expression levels of SAMDH1, ISGs (MxA, MxB, HERC5, IRF7) and IRF3 were evaluated by real-time RT-PCR assays.

Results

SAMHD1 levels in HIV-1-positive patients were significantly increased compared to those in healthy donors. SAMHD1 expression was enhanced in treated patients compared to naïve patients (p < 0.0001) and healthy donors (p = 0.0038). Virologically suppressed treated patients exhibited higher SAMHD1 levels than healthy donors (p = 0.0008), viraemic patients (p = 0.0001) and naïve patients (p < 0.0001). SAMHD1 levels were also increased in CD4+ T cells compared to those in CD14+ monocytes and in PBMC compared to those of GALT. Moreover, SAMHD1 was expressed more strongly than ISGs in HIV-1-infected patients and positive correlations were found between SAMHD1, ISGs and IRF3 levels.

Conclusions

SAMHD1 is more strongly expressed than the classical IFN-related genes, increased during antiretroviral therapy and correlated with ISGs and IRF3 in HIV-1-infected patients.

Keywords

SAMHD1 HIV-1 ISG IFN IRF3 

Notes

Author contributions

MS wrote the paper, carried out the experiment and performed statistical analysis. LS, AV, CP, and CR collected the samples and participated in carrying out the experiments. IM, GC and GD provided patient’s samples and participated in the design and revision of the manuscript. OT and GA participated in the design and revision of the manuscript. CS conceived the study, analyzed the data, wrote the paper and supervised the work. All authors reviewed the work and approved the final manuscript.

Funding

This work was supported by a grant to C.S. (Carolina Scagnolari) from Sapienza University of Rome (Finanziamenti di ateneo per la ricerca scientifica - anno 2017, RM11715C586062AF).

Compliance with ethical standards

Conflict of interest

The authors declare no potential conflict of interest.

Supplementary material

430_2018_574_MOESM1_ESM.pptx (54 kb)
Supplementary material 1 (PPTX 53 KB)
430_2018_574_MOESM2_ESM.pptx (56 kb)
Supplementary material 2 (PPTX 55 KB)
430_2018_574_MOESM3_ESM.pptx (58 kb)
Supplementary material 3 (PPTX 58 KB)

References

  1. 1.
    Antonucci JM, St Gelais C, Wu L (2017) The dynamic interplay between HIV-1, SAMHD1, and the innate antiviral response. Front Immunol 8:1541.  https://doi.org/10.3389/fimmu.2017.01541 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13(3):223–228.  https://doi.org/10.1038/ni.2236 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480(7377):379–382.  https://doi.org/10.1038/nature10623 CrossRefPubMedGoogle Scholar
  4. 4.
    Jia X, Zhao Q, Xiong Y (2015) HIV suppression by host restriction factors and viral immune evasion. Curr Opin Struct Biol 31:106–114.  https://doi.org/10.1016/j.sbi.2015.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg T, Panitz S, Flory E, Landau NR, Sertel S, Rutsch F, Lasitschka F, Kim B, König R, Fackler OT, Keppler OT (2012) SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 18(11):1682–1687.  https://doi.org/10.1038/nm.2964 CrossRefPubMedGoogle Scholar
  6. 6.
    Schmidt S, Schenkova K, Adam T, Erikson E, Lehmann-Koch J, Sertel S, Verhasselt B, Fackler OT, Lasitschka F, Keppler OT (2015) SAMHD1’s protein expression profile in humans. J Leukoc Biol 98(1):5–14.  https://doi.org/10.1189/jlb.4HI0714-338RR CrossRefPubMedGoogle Scholar
  7. 7.
    Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 2015, 16(6):546–53.  https://doi.org/10.1038/ni.3156
  8. 8.
    Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim SY, Seo D, Kim J, White TE, Brandariz-Nuñez A, Diaz-Griffero F, Yun CH, Hollenbaugh JA, Kim B, Baek D, Ahn K (2014) The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20(8):936–941.  https://doi.org/10.1038/nm.3626 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yang Z, Greene WC (2014) A new activity for SAMHD1 in HIV restriction. Nat Med 20(8):808–809.  https://doi.org/10.1038/nm.3657 CrossRefPubMedGoogle Scholar
  10. 10.
    Antonucci JM, St Gelais C, de Silva S, Yount JS, Tang C, Ji X, Shepard C, Xiong Y, Kim B, Wu L (2016) SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity. Nat Med 22(10):1072–1074.  https://doi.org/10.1038/nm.4163 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségéral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474(7353):654–657.  https://doi.org/10.1038/nature10117 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474(7353):658–661.  https://doi.org/10.1038/nature10195 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gramberg T, Kahle T, Bloch N, Wittmann S, Müllers E, Daddacha W, Hofmann H, Kim B, Lindemann D, Landau NR. Restriction of diverse retroviruses by SAMHD1. Retrovirology 2013, 10:26.  https://doi.org/10.1186/1742-4690-10-26
  14. 14.
    Sze A, Belgnaoui SM, Olagnier D, Lin R, Hiscott J, van Grevenynghe J (2013) Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis. Cell Host Microbe 14(4):422–434.  https://doi.org/10.1016/j.chom.2013.09.009 CrossRefPubMedGoogle Scholar
  15. 15.
    Sze A, Olagnier D, Lin R, van Grevenynghe J, Hiscott J (2013) SAMHD1 host restriction factor: a link with innate immune sensing of retrovirus infection. J Mol Biol 425(24):4981–4994.  https://doi.org/10.1016/j.jmb.2013.10.022 CrossRefPubMedGoogle Scholar
  16. 16.
    Chen Z, Zhang L, Ying S (2012) SAMHD1: a novel antiviral factor in intrinsic immunity. Future Microbiol 7(9):1117–1126.  https://doi.org/10.2217/fmb.12.81 CrossRefPubMedGoogle Scholar
  17. 17.
    Kim ET, White TE, Brandariz-Núñez A, Diaz-Griffero F, Weitzman MD (2013) SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication. J Virol 87(23):12949–12956.  https://doi.org/10.1128/JVI.02291-13 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen Z, Zhu M, Pan X, Zhu Y, Yan H, Jiang T, Shen Y, Dong X, Zheng N, Lu J, Ying S, Shen Y (2014) Inhibition of Hepatitis B virus replication by SAMHD1. Biochem Biophys Res Commun 450(4):1462–1468.  https://doi.org/10.1016/j.bbrc.2014.07.023 CrossRefPubMedGoogle Scholar
  19. 19.
    Riveira-Muñoz E, Ruiz A, Pauls E, Permanyer M, Badia R, Mothe B, Crespo M, Clotet B, Brander C, Ballana E, Esté JA (2014) Increased expression of SAMHD1 in a subset of HIV-1 elite controllers. J Antimicrob Chemother 69(11):3057–3060.  https://doi.org/10.1093/jac/dku276 CrossRefPubMedGoogle Scholar
  20. 20.
    Bolduan S, Koppensteiner H, Businger R, Rebensburg S, Kunze C, Brack-Werner R, Draenert R, Schindler M (2017) T cells with low CD2 levels express reduced restriction factors and are preferentially infected in therapy naïve chronic HIV-1 patients. J Int AIDS Soc 20(1):21865.  https://doi.org/10.7448/IAS.20.1.21865 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fu W, Qiu C, Zhou M, Zhu L, Yang Y, Qiu C, Zhang L, Xu X, Wang Y, Xu J, Zhang X (2016) Immune Activation Influences SAMHD1 Expression and Vpx-mediated SAMHD1 Degradation during Chronic HIV-1 Infection. Sci Rep 6:38162.  https://doi.org/10.1038/srep38162 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kiselinova M, De Spiegelaere W, Buzon MJ, Malatinkova E, Lichterfeld M, Vandekerckhove L (2016) Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth. PLoS Pathog 12(3):e1005472.  https://doi.org/10.1371/journal.ppat.1005472 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Berger A, Sommer AF, Zwarg J, Hamdorf M, Welzel K, Esly N, Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LC, Fernandez-Sesma A, Rutsch F, Simon V, König R, Flory E (2011) SAMHD1-deficient CD14 + cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 7(12):e1002425.  https://doi.org/10.1371/journal.ppat.1002425 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Goujon C, Schaller T, Galão RP, Amie SM, Kim B, Olivieri K, Neil SJ, Malim MH (2013) Evidence for IFNα-induced, SAMHD1-independent inhibitors of early HIV-1 infection. Retrovirology 10:23.  https://doi.org/10.1186/1742-4690-10-23 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    St Gelais C, de Silva S, Amie SM, Coleman CM, Hoy H, Hollenbaugh JA, Kim B, Wu L (2012) SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4 + T-lymphocytes cannot be upregulated by interferons. Retrovirology 9:105.  https://doi.org/10.1186/1742-4690-9-105 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bloch N, O’Brien M, Norton TD, Polsky SB, Bhardwaj N, Landau NR (2014) HIV type 1 infection of plasmacytoid and myeloid dendritic cells is restricted by high levels of SAMHD1 and cannot be counteracted by Vpx. AIDS Res Hum Retroviruses 30(2):195–203.  https://doi.org/10.1089/AID.2013.0119 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yang S, Zhan Y, Zhou Y, Jiang Y, Zheng X, Yu L, Tong W, Gao F, Li L, Huang Q, Ma Z, Tong G (2012) Interferon regulatory factor 3 is a key regulation factor for inducing the expression of SAMHD1 in antiviral innate immunity. Sci Rep 6:29665.  https://doi.org/10.1038/srep29665 CrossRefGoogle Scholar
  28. 28.
    Harris RS, Hultquist JF, Evans DT (2012) The restriction factors of human immunodeficiency virus. J Biol Chem 287(49):40875–40883.  https://doi.org/10.1074/jbc.R112.416925 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cribier A, Descours B, Valadão AL, Laguette N, Benkirane M (2013) Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep 3(4):1036–1043.  https://doi.org/10.1016/j.celrep.2013.03.017 CrossRefPubMedGoogle Scholar
  30. 30.
    Sandstrom TS, Ranganath N, Angel JB (2017) Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine Growth Factor Rev 37:1–16.  https://doi.org/10.1016/j.cytogfr.2017.04.004 CrossRefPubMedGoogle Scholar
  31. 31.
    Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K (2018) Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol 8:1823.  https://doi.org/10.3389/fimmu.2017.01823 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    d’Ettorre G, Ceccarelli G, Andreotti M, Selvaggi C, Giustini N, Serafino S, Schietroma I, Nunnari G, Antonelli G, Vullo V, Scagnolari C (2015) Analysis of Th17 and Tc17 Frequencies and Antiviral Defenses in Gut-Associated Lymphoid Tissue of Chronic HIV-1 Positive Patients. Mediators Inflamm 2015:395484.  https://doi.org/10.1155/2015/395484 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pierangeli A, Degener AM, Ferreri ML, Riva E, Rizzo B, Turriziani O, Luciani S, Scagnolari C, Antonelli G (2011) Interferon-induced gene expression in cervical mucosa during human papillomavirus infection. Int J Immunopathol Pharmacol 24(1):217–223.  https://doi.org/10.1177/039463201102400126 CrossRefPubMedGoogle Scholar
  34. 34.
    Scagnolari C, Monteleone K, Selvaggi C, Pierangeli A, D’Ettorre G, Mezzaroma I, Turriziani O, Gentile M, Vullo V, Antonelli G (2016) ISG15 expression correlates with HIV-1 viral load and with factors regulating T cell response. Immunobiology 221(2):282–290.  https://doi.org/10.1016/j.imbio.2015.10.007 CrossRefPubMedGoogle Scholar
  35. 35.
    Buchanan EL, McAlexander MA, Witwer KW (2015) SAMHD1 expression in blood cells of HIV-1 elite suppressors and viraemic progressors. J Antimicrob Chemother 70(3):954–956.  https://doi.org/10.1093/jac/dku428 CrossRefPubMedGoogle Scholar
  36. 36.
    Ruffin N, Brezar V, Ayinde D, Lefebvre C, Schulze Zur Wiesch J, van Lunzen J, Bockhorn M, Schwartz O, Hocini H, Lelievre JD, Banchereau J, Levy Y, Seddiki N (2015) Low SAMHD1 expression following T-cell activation and proliferation renders CD4 + T cells susceptible to HIV-1. AIDS 29(5):519–530.  https://doi.org/10.1097/QAD.0000000000000594 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Huber AD, Michailidis E, Schultz ML, Ong YT, Bloch N, Puray-Chavez MN et al (2014) SAMHD1 has differential impact on the efficacies of HIV nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 58:4915–4919.  https://doi.org/10.1128/AAC.02745-1 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ballana E, Badia R, Terradas G, Torres-Torronteras J, Ruiz A, Pauls E et al (2014) SAMHD1 specifically affects the antiviral potency of thymidine analog HIV reverse transcriptase inhibitors. Antimicrob Agents Chemother 58:4804–4813.  https://doi.org/10.1128/AAC.03145-14 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ordonez P, Kunzelmann S, Groom HC, Yap MW, Weising S, Meier C et al (2017) SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells. Sci Rep 7:42824.  https://doi.org/10.1038/srep42824 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Buchanan EL, Espinoza DA, McAlexander MA, Myers SL, Moyer A, Witwer KW (2016) SAMHD1 transcript upregulation during SIV infection of the central nervous system does not associate with reduced viral load. Sci Rep 6:22629.  https://doi.org/10.1038/srep22629 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yu H, Usmani SM, Borch A, Krämer J, Stürzel CM, Khalid M, Li X, Krnavek D, van der Ende ME, Osterhaus AD, Gruters RA, Kirchhoff F (2013) The efficiency of Vpx-mediated SAMHD1 antagonism does not correlate with the potency of viral control in HIV-2-infected individuals. Retrovirology 10:27.  https://doi.org/10.1186/1742-4690-10-27 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Coiras M, Bermejo M, Descours B, Mateos E, García-Pérez J, LóHYP-Huertas MR, Lederman MM, Benkirane M, Alcamí J (2016) IL-7 Induces SAMHD1 Phosphorylation in CD4 + T Lymphocytes, Improving Early Steps of HIV-1 Life Cycle. Cell Rep 14(9):2100–2107.  https://doi.org/10.1016/j.celrep.2016.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Liao W, Bao Z, Cheng C, Mok YK, Wong WS. Dendritic cell-derived interferon-gamma-induced protein mediates tumor necrosis factor-alpha stimulation of human lung fibroblasts. Proteomics 2008, 8(13):2640–50.  https://doi.org/10.1002/pmic.200700954
  44. 44.
    Pauls E, Jimenez E, Ruiz A, Permanyer M, Ballana E, Costa H, Nascimiento R, Parkhouse RM, Peña R, Riveiro-Muñoz E, Martinez MA, Clotet B, Esté JA, Bofill M (2013) Restriction of HIV-1 replication in primary macrophages by IL-12 and IL-18 through the upregulation of SAMHD1. J Immunol 190(9):4736–4741.  https://doi.org/10.4049/jimmunol.1203226 CrossRefPubMedGoogle Scholar
  45. 45.
    Buitendijk M, Eszterhas SK, Howell AL (2014) Toll-like receptor agonists are potent inhibitors of human immunodeficiency virus-type 1 replication in peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 30(5):457–467.  https://doi.org/10.1089/AID.2013.0199 CrossRefPubMedGoogle Scholar
  46. 46.
    Sang M, Liu JB, Dai M, Wu JG, Ho WZ (2014) Toll-like receptor 3 signaling inhibits simian immunodeficiency virus replication in macrophages from rhesus macaques. Antiviral Res 112:103–112.  https://doi.org/10.1016/j.antiviral.2014.10.008 CrossRefPubMedGoogle Scholar
  47. 47.
    Dragin L, Nguyen LA, Lahouassa H, Sourisce A, Kim B, Ramirez BC, Margottin-Goguet F (2013) Interferon block to HIV-1 transduction in macrophages despite SAMHD1 degradation and high deoxynucleoside triphosphates supply. Retrovirology 10:30.  https://doi.org/10.1186/1742-4690-10-30 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Riess M, Fuchs NV, Idica A, Hamdorf M, Flory E, Pedersen IM, König R (2017) Interferons Induce Expression of SAMHD1 in Monocytes through Down-regulation of miR-181a and miR-30a. J Biol Chem 292(1):264–277.  https://doi.org/10.1074/jbc.M116.752584 CrossRefPubMedGoogle Scholar
  49. 49.
    Altfeld M, Gale M Jr (2015) Innate immunity against HIV-1 infection. Nat Immunol 16(6):554–562.  https://doi.org/10.1038/ni.3157 CrossRefGoogle Scholar
  50. 50.
    Blasius AL, Beutler B (2010) Intracellular toll-like receptors. Immunity 32(3):305–315.  https://doi.org/10.1016/j.immuni.2010.03.012 CrossRefPubMedGoogle Scholar
  51. 51.
    Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650.  https://doi.org/10.1016/j.immuni.2011.05.006 CrossRefPubMedGoogle Scholar
  52. 52.
    Ramos HJ, Gale M Jr (2011) RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 1(3):167–176.  https://doi.org/10.1016/j.coviro.2011.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692.  https://doi.org/10.1016/j.immuni.2011.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    White TE, Brandariz-Nuñez A, Martinez-Lopez A, Knowlton C, Lenzi G, Kim B, Ivanov D, Diaz-Griffero F (2017) A SAMHD1 mutation associated with Aicardi-Goutières syndrome uncouples the ability of SAMHD1 to restrict HIV-1 from its ability to downmodulate type I interferon in humans. Hum Mutat 38(6):658–668.  https://doi.org/10.1002/humu.23201 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Oh C, Ryoo J, Park K, Kim B, Daly MB, Cho D, Ahn K (2018) A central role for PI3K-AKT signaling pathway in linking SAMHD1-deficiency to the type I interferon signature. Sci Rep 8(1):84.  https://doi.org/10.1038/s41598-017-18308-8 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G (2012) Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci USA 109(11):4239–4244.  https://doi.org/10.1073/pnas.1114981109 CrossRefPubMedGoogle Scholar
  57. 57.
    Cheon H, Holvey-Bates EG, Schoggins JW, Forster S, Hertzog P, Imanaka N, Rice CM, Jackson MW, Junk DJ, Stark GR (2013) IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J 32(20):2751–2763.  https://doi.org/10.1038/emboj.2013.203 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Scagnolari C, Antonelli G (2018) Type I interferon and HIV: Subtle balance between antiviral activity, immunopathogenesis and the microbiome. Cytokine Growth Factor Rev 40:19–31.  https://doi.org/10.1016/j.cytogfr.2018.03.003 CrossRefPubMedGoogle Scholar
  59. 59.
    Rodero MP, Decalf J, Bondet V, Hunt D, Rice GI, Werneke S, McGlasson SL, Alyanakian MA, Bader-Meunier B, Barnerias C, Bellon N, Belot A, Bodemer C, Briggs TA, Desguerre I, Frémond ML, Hully M, van den Maagdenberg AMJM, Melki I, Musset L, Pelzer N, Quartier P, Terwindt GM, Wardlaw J, Wiseman S, Rieux-Laucat F, Rose Y, Neven B, Hertel C, Hayday A, Albert ML, Rozenberg F, Crow YJ, Duffy D (2017) Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J Exp Med 214(5):1547–1555.  https://doi.org/10.1084/jem.20161451 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    El-Sherbiny YM, Psarras A, Yusof MYM, Hensor EMA, Tooze R, Doody G, Mohamed AAA, McGonagle D, Wittmann M, Emery P, Vital EM (2018) A novel two-score system for interferon status segregates autoimmune diseases and correlates with clinical features. Sci Rep 8(1):5793.  https://doi.org/10.1038/s41598-018-24198-1 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schwartz O, Laguette N, Benkirane M (2012) SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 9:87.  https://doi.org/10.1186/1742-4690-9-87 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pinacchio C, Scheri GC, Statzu M, Santinelli L, Ceccarelli G, Innocenti GP, Vullo V, Antonelli G, Brenchley JM, d’Ettorre G, Scagnolari C (2018) Type I/II interferon in HIV-1-infected patients: expression in gut mucosa and in peripheral blood mononuclear cells and its modification upon probiotic supplementation. J Immunol Res 2018:1738676.  https://doi.org/10.1155/2018/1738676 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Badia R, Pujantell M, Torres-Torronteras J, Menéndez-Arias L, Martí R, Ruzo A, Pauls E, Clotet B, Ballana E, Esté JA (2017) Riveira-Muñoz E. SAMHD1 is active in cycling cells permissive to HIV-1 infection. Antiviral Res 142:123–135.  https://doi.org/10.1016/j.antiviral.2017.03.019 CrossRefPubMedGoogle Scholar
  64. 64.
    Ruiz A, Pauls E, Badia R, Torres-Torronteras J, Riveira-Muñoz E, Clotet B, Martí R, Ballana E, Esté JA (2015) Cyclin D3-dependent control of the dNTP pool and HIV-1 replication in human macrophages. Cell Cycle 14(11):1657–1665.  https://doi.org/10.1080/15384101.2015.1030558 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Pauls E, Ruiz A, Badia R, Permanyer M, Gubern A, Riveira-Muñoz E, Torres-Torronteras J, Alvarez M, Mothe B, Brander C, Crespo M, Menéndez-Arias L, Clotet B, Keppler OT, Martí R, Posas F, Ballana E, Esté JA (2014) Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells. J Immunol 193(4):1988–1997.  https://doi.org/10.4049/jimmunol.1400873 CrossRefPubMedGoogle Scholar
  66. 66.
    Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973.  https://doi.org/10.1016/j.febslet.2009.10.036 CrossRefPubMedGoogle Scholar
  67. 67.
    Kohnken R, Kodigepalli KM, Mishra A, Porcu P, Wu L (2017) MicroRNA-181 contributes to downregulation of SAMHD1 expression in CD4+ T-cells derived from Sèzary syndrome patients. Leuk Res 52:58–66.  https://doi.org/10.1016/j.leukres.2016.11.010 CrossRefPubMedGoogle Scholar
  68. 68.
    Wang JL, Lu FZ, Shen XY, Wu Y, Zhao LT (2014) SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation. Biochem Biophys Res Commun 455(3–4):229–233.  https://doi.org/10.1016/j.bbrc.2014.10.153 CrossRefPubMedGoogle Scholar
  69. 69.
    Lee EJ, Seo JH, Park JH, Vo TTL, An S, Bae SJ, Le H, Lee HS, Wee HJ, Lee D, Chung YH, Kim JA, Jang MK, Ryu SH, Yu E, Jang SH, Park ZY, Kim KW (2017) SAMHD1 acetylation enhances its deoxynucleotide triphosphohydrolase activity and promotes cancer cell proliferation. Oncotarget 8(40):68517–68529.  https://doi.org/10.18632/oncotarget.19704 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maura Statzu
    • 1
  • Letizia Santinelli
    • 1
  • Agnese Viscido
    • 1
  • Claudia Pinacchio
    • 2
  • Giancarlo Ceccarelli
    • 2
  • Claudia Rotondo
    • 1
  • Giuseppe Corano Scheri
    • 2
  • Ivano Mezzaroma
    • 3
  • Ombretta Turriziani
    • 1
  • Guido Antonelli
    • 1
  • Gabriella d’Ettorre
    • 2
  • Carolina Scagnolari
    • 1
    Email author
  1. 1.Laboratory of Virology, Department of Molecular Medicine, Affiliated to Istituto Pasteur Italia, Cenci Bolognetti FoundationSapienza University of RomeRomeItaly
  2. 2.Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
  3. 3.Department of Translational and Precision MedicineSapienza University of RomeRomeItaly

Personalised recommendations