Advertisement

Medical Microbiology and Immunology

, Volume 208, Issue 5, pp 585–607 | Cite as

Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity

  • Vigyasa Singh
  • Ujjal Jyoti PhukanEmail author
Review

Abstract

Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.

Keywords

Staphylococcus aureus Virulence factors Proteases Modulators of proteases Regulators of immune cells 

Notes

Acknowledgements

Authors would like to acknowledge Prof. Ashis Kumar Nandi, JNU, New Delhi, India and Dr. M.P. Darokar CSIR-CIMAP, Lucknow, India for their help and support. We would also like to thank Department of Biotechnology (DBT), Ministry of Science & Technology and DST-SERB, Govt. of India for fellowship.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 12:948–958CrossRefGoogle Scholar
  2. 2.
    Singh V, Pal A, Darokar MP (2015) A polyphenolic flavonoid glabridin: Oxidative stress response in multidrug-resistant Staphylococcus aureus. Free Radic Biol Med 87:48–57CrossRefPubMedGoogle Scholar
  3. 3.
    Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532CrossRefPubMedGoogle Scholar
  4. 4.
    David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23:616–687CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sachse F, Becker K, von Eiff C, Metze D, Rudack C (2010) Staphylococcus aureus invades the epithelium in nasal polyposis and induces IL-6 in nasal epithelial cells in vitro. Allergy 65:1430–1437CrossRefPubMedGoogle Scholar
  6. 6.
    Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, Kong HH, Amagai M, Nagao K (2015) Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 42:756–766CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tomassen P, Vandeplas G, Van Zele T, Cardell LO, Arebro J, Olze H, Förster-Ruhrmann U, Kowalski ML, Olszewska-Ziąber A et al (2016) Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 137:1449–1456CrossRefPubMedGoogle Scholar
  8. 8.
    Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pietrocola G, Nobile G, Rindi S, Speziale P (2017) Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Front Cell Infect Microbiol 7:166CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz-Planillo R, Hasegawa M, Villaruz AE, Cheung GY et al (2013) Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature 503:397–401CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bröker BM, Mrochen D, Péton V (2016) The T Cell Response to Staphylococcus. Pathog Aureus 17;5(1)Google Scholar
  12. 12.
    Cho SH, Strickland I, Tomkinson A, Fehringer AP, Gelfand EW, Leung DY (2001) Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. J Invest Dermatol 116:658–663CrossRefPubMedGoogle Scholar
  13. 13.
    Thammavongsa V, Kim HK, Missiakas D, Schneewind O (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13:529–543CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Itoh S, Hamada E, Kamoshida G, Yokoyama R, Takii T, Onozaki K, Tsuji T (2010) Staphylococcal superantigen-like protein 10 (SSL10) binds to human immunoglobulin G (IgG) and inhibits complement activation via the classical pathway. Mol Immunol 47:932–938CrossRefPubMedGoogle Scholar
  15. 15.
    Koziel J, Potempa J (2013) Protease-armed bacteria in the skin. Cell Tissue Res 351:325–337CrossRefPubMedGoogle Scholar
  16. 16.
    Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB Jr, Lehrer RI, Welsh MJ, Tack BF (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brogden KA, Ackermann M, McCray PB Jr, Tack BF (2003) Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22:465–478CrossRefPubMedGoogle Scholar
  18. 18.
    McAdow M, DeDent AC, Emolo C, Cheng AG, Kreiswirth BN, Missiakas DM, Schneewind O (2012) Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect Immun 80:3389–3398CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ, Mowen K, Opdenakker G, Kubes P (2015) Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun 26:6673CrossRefGoogle Scholar
  20. 20.
    Goerke C, Wolz C (2004) Regulatory and genomic plasticity of Staphylococcus aureus during persistent colonization and infection. Int J Med Microbiol 294:195–202CrossRefPubMedGoogle Scholar
  21. 21.
    Altman DR, Sullivan MJ, Chacko KI, Balasubramanian D, Pak TR, Sause WE, Kumar K, Sebra R, Deikus G, Attie O, Rose H, Lewis M, Fulmer Y, Bashir A, Kasarskis A, Schadt EE, Richardson AR, Torres VJ, Shopsin B, van Bakel H (2018) Genome plasticity of agr-defective Staphylococcus aureus during clinical infection. Infect Immun.  https://doi.org/10.1128/IAI.00331-18 (Epub ahead of print) CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ziebandt AK, Becher D, Ohlsen K, Hacker J, Hecker M, Engelmann S (2004) The influence of agr and sigmaB in growth phase dependent regulation of virulence factors in Staphylococcus aureus. Proteomics 4:3034–3047CrossRefPubMedGoogle Scholar
  23. 23.
    George EA, Muir TW (2007) Molecular mechanisms of agr quorum sensing in virulent staphylococci. Chembiochem 8:847–855CrossRefPubMedGoogle Scholar
  24. 24.
    Bronner S, Monteil H, Prévost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28:183–200CrossRefPubMedGoogle Scholar
  25. 25.
    Queck SY, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, Sturdevant DE, Ricklefs SM, Li M, Otto M (2008) RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32:150–158CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bayer MG, Heinrichs JH, Cheung AL (1996) The molecular architecture of the sar locus in Staphylococcus aureus. J Bacteriol 178:4563–4570CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Arya R, Princy SA (2013) An insight into pleiotropic regulators Agr and Sar: molecular probes paving the new way for antivirulent therapy. Future Microbiol 8:1339–1353CrossRefPubMedGoogle Scholar
  28. 28.
    Chien Y, Manna AC, Projan SJ, Cheung AL (1999) SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J Biol Chem 274:37169–37176CrossRefPubMedGoogle Scholar
  29. 29.
    Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rogasch K, Ruhmling V, Pane-Farre J, Hoper D, Weinberg C, Fuchs S, Schmudde M, Broker BM, Wolz C, Hecker M, Engelmann S (2006) Influence of the two-component system SaeRS on global gene expression in two different Staphylococcus aureus strains. J Bacteriol 188:7742–7758CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Liu Q, Yeo WS, Bae T (2016) The SaeRS two-component system of Staphylococcus aureus. Genes (Basel) 7(10):81CrossRefGoogle Scholar
  32. 32.
    Steinhuber A, Goerke C, Bayer MG, Döring G, Wolz C (2003) Molecular architecture of the regulatory locus sae of Staphylococcus aureus and its impact on the expression of virulence factors. J Bacteriol 185:6278–6286CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Giraudo AT, Calzolari A, Cataldi AA, Bogni C, Nagel R (1999) The sae locus of Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol Lett 177:15–22CrossRefPubMedGoogle Scholar
  34. 34.
    Geiger T, Goerke C, Mainiero M, Kraus D, Wolz C (2008) The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals. J Bacteriol 190:3419–3428CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Novick RP, Jiang D (2003) The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing. Microbiology 149:2709–2717CrossRefPubMedGoogle Scholar
  36. 36.
    Jonsson IM, Arvidson S, Foster S, Tarkowski A (2004) Sigma factor B and RsbU are required for virulence in Staphylococcus aureus-induced arthritis and sepsis. Infect Immun 72:6106–6111CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bischoff M, Entenza JM, Giachino P (2001) Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. J Bacteriol 183:5171–5179CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Smagur J, Guzik K, Bzowska M, Kuzak M, Zarebski M, Kantyka T, Walski M, Gajkowska B, Potempa J (2009) Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biol Chem 390:361–371CrossRefPubMedGoogle Scholar
  40. 40.
    Shaw L, Golonka E, Potempa J, Foster SJ (2004) The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150:217–228CrossRefPubMedGoogle Scholar
  41. 41.
    Filipek R, Rzychon M, Oleksy A, Gruca M, Dubin A, Potempa J, Bochtler MJ (2003) The Staphostatin–staphopain complex: a forward binding inhibitor in complex with its target cysteine protease. Biol Chem 278:40959–40966CrossRefGoogle Scholar
  42. 42.
    Kantyka T, Shaw NL, Potempa J (2015) Staphopain A. Handb Proteolytic Enzymes 2:2150–2157Google Scholar
  43. 43.
    Potempa J, Dubin A, Korzus G, Travis J (1988) Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J Biol Chem 263:2664–2667PubMedGoogle Scholar
  44. 44.
    Ohbayashi T, Irie A, Murakami Y, Nowak M, Potempa J, Nishimura Y, Shinohara M, Imamura T (2011) Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus. Microbiology 157:786–792CrossRefPubMedGoogle Scholar
  45. 45.
    Drapeau GR (1978) Role of metalloprotease in activation of the precursor of staphylococcal protease. J Bacteriol 136:607–613PubMedPubMedCentralGoogle Scholar
  46. 46.
    Newsom SW (2008) Ogston’s coccus. J Hosp Infect 70:369–372CrossRefPubMedGoogle Scholar
  47. 47.
    Spaan AN, Henry T, van Rooijen WJM, Perret M, Badiou C, Aerts PC, Kemmink J, de Haas CJC, van Kessel KPM, Vandenesch F, Lina G, van Strijp JAG (2013) The staphylococcal toxin panton-valentine leukocidin targets human C5a receptors. Cell Host Microbe 13:584–594CrossRefPubMedGoogle Scholar
  48. 48.
    Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, Ransohoff RM, Miller RH (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110:373–383CrossRefPubMedGoogle Scholar
  49. 49.
    Laarman AJ, Mijnheer G, Mootz JM, van Rooijen WJ, Ruyken M, Malone CL, Heezius EC, Ward R, Milligan G, van Strijp JA, de Haas CJ, Horswill AR, van Kessel KP, Rooijakkers SH (2012) Staphylococcus aureus staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J 31:3607–3619CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Potempa J, Watorek W, Travis J (1986) The inactivation of human plasma alpha 1-proteinase inhibitor by proteinases from Staphylococcus aureus. J Biol Chem 261:14330–14334PubMedGoogle Scholar
  51. 51.
    Jusko M, Potempa J, Kantyka T, Bielecka E, Miller HK, Kalinska M, Dubin G, Garred P, Shaw LN, Blom AM (2014) Staphylococcal proteases aid in evasion of the human complement system. J Innate Immun 6:31–46CrossRefPubMedGoogle Scholar
  52. 52.
    Dubin G, Krajewski M, Popowicz G, Stec-Niemczyk J, Bochtler M, Potempa J, Dubin A, Holak TA (2003) A novel class of cysteine protease inhibitors: solution structure of staphostatin A from Staphylococcus aureus. Biochemistry 42:13449–13456CrossRefPubMedGoogle Scholar
  53. 53.
    Massimi I, Park E, Rice K, Muller-Esterl W, Sauder D, McGavin MJ (2002) Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J Biol Chem 277:41770–41777CrossRefPubMedGoogle Scholar
  54. 54.
    Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM (2012) Galectin-3 binds neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol 14:1657–1675CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Farnworth SL, Henderson NC, Mackinnon AC, Atkinson KM, Wilkinson T, Dhaliwal K, Hayashi K, Simpson AJ, Rossi AG, Haslett C, Sethi T (2008) Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol 172:395–405CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Elmwall J, Kwiecinski J, Na M, Ali AA, Osla V, Shaw LN, Wang W, Sävman K, Josefsson E, Bylund J, Jin T, Welin A, Karlsson A (2017) Galectin-3 Is a target for proteases involved in the virulence of Staphylococcus aureus. Infect Immun 85:e00177–e00117CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kolar SL, Ibarra JA, Rivera FE, Mootz JM, Davenport JE, Stevens SM, Horswill AR, Shaw LN (2013) Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen 2:18–34CrossRefPubMedGoogle Scholar
  58. 58.
    Prasad L, Leduc Y, Hayakawa K, Delbaere LT (2004) The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus. Acta Crystallogr D Biol Crystallogr 60:256–259CrossRefPubMedGoogle Scholar
  59. 59.
    Rice K, Peralta R, Bast D, de Azavedo J, McGavin MJ (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect Immun 69:159–169CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Prokesová L, Potuzníková B, Potempa J, Zikán J, Radl J, Hachová L, Baran K, Porwit-Bobr Z, John C (1992) Cleavage of human immunoglobulins by serine proteinase from Staphylococcus aureus. Immunol Lett 31:259–265CrossRefPubMedGoogle Scholar
  61. 61.
    Ryan MH, Petrone D, Nemeth JF, Barnathan E, Björck L, Jordan RE (2008) Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol 45:1837–1846CrossRefPubMedGoogle Scholar
  62. 62.
    Von Pawel-Rammingen U (2012) Streptococcal IdeS and its impact on immune response and inflammation. J Innate Immun 4:132–140CrossRefGoogle Scholar
  63. 63.
    Zhang L, Jacobsson K, Ström K, Lindberg M, Frykberg L (1999) Staphylococcus aureus expresses a cell surface protein that binds both IgG and β2-glycoprotein I. Microbiology 145:177–183CrossRefPubMedGoogle Scholar
  64. 64.
    Burman JD, Leung E, Atkins KL, O’Seaghdha MN, Lango L, Bernadó P et al (2008) Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein: indications of a novel mechanism of complement evasion by Staphylococcus aureus. J Biol Chem 283:17579–17593CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Brezski RJ, Vafa O, Petrone D, Tam SH, Powers G, Ryan MH, Luongo JL, Oberholtzer A, Knight DM, Jordan RE (2009) Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. Proc Natl Acad Sci USA 106:17864–17869CrossRefPubMedGoogle Scholar
  66. 66.
    Jordan RE, Fernandez J, Brezski RJ, Greenplate AR, Knight DM, Raju TS, Lynch AS (2016) A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity. Immunol Lett 172:29–39CrossRefPubMedGoogle Scholar
  67. 67.
    Berti AD, Shukla N, Rottier AD, McCrone JS, Turner HM, Monk IR, Baines SL, Howden BP, Proctor RA, Rose WE (2018) Daptomycin selects for genetic and phenotypic adaptations leading to antibiotic tolerance in MRSA. J Antimicrob Chemother 73:2030–2033CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang B, McHugh BJ, Qureshi A, Campopiano DJ, Clarke DJ, Fitzgerald JR, Dorin JR, Weller R, Davidson DJ (2017) IL-1β-induced protection of keratinocytes against Staphylococcus aureus-secreted proteases is mediated by human β-defensin 2. J Invest Dermatol 37:95–105CrossRefGoogle Scholar
  69. 69.
    Ohnemus U, Kohrmeyer K, Houdek P, Rohde H, Wladykowski E, Vidal S, Horstkotte MA, Aepfelbacher M, Kirschner N, Behne MJ, Moll I, Brandner JM (2008) Regulation of epidermal tight-junctions (TJ) during infection with exfoliative toxin-negative Staphylococcus strains. J Invest Dermatol 128:906–916CrossRefPubMedGoogle Scholar
  70. 70.
    Hirasawa Y, Takai T, Nakamura T, Mitsuishi K, Gunawan H, Suto H, Ogawa T, Wang XL, Ikeda S, Okumura K, Ogawa H (2010) Staphylococcus aureus extracellular protease causes epidermal barrier dysfunction. J Invest Dermatol 130:614–617CrossRefPubMedGoogle Scholar
  71. 71.
    Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL (2013) A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4:e00537–e00512CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Abe T, Sugano E, Saigo Y, Tamai M (2003) Interleukin-1beta and barrier function of retinal pigment epithelial cells (ARPE-19): aberrant expression of junctional complex molecules. Invest Ophthalmol Vis Sci 44:4097e104CrossRefGoogle Scholar
  73. 73.
    Geissler S, Götz F, Kupke T (1996) Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide. J Bacteriol 178:284–288CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kuhn ML, Prachi P, Minasov G, Shuvalova L, Ruan J, Dubrovska I, Winsor J, Giraldi M, Biagini M, Liberatori S, Savino S, Bagnoli F, Anderson WF, Grandi G (2014) Structure and protective efficacy of the Staphylococcus aureus autocleaving protease EpiP. FASEB J 28:1780–1793CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Edwards RJ, Taylor GW, Ferguson M, Murray S, Rendell N, Wrigley A, Bai Z, Boyle J, Finney SJ, Jones A, Russell HH, Turner C, Cohen J, Faulkner L, Sriskandan S (2005) Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. J Infect Dis 192:783–790CrossRefPubMedGoogle Scholar
  76. 76.
    Zinkernagel AS, Peyssonnaux C, Johnson RS, Nizet V (2008) Pharmacologic augmentation of hypoxia-inducible factor-1alpha with mimosine boosts the bactericidal capacity of phagocytes. J Infect Dis 197:214–217CrossRefPubMedGoogle Scholar
  77. 77.
    Bukowski M, Wladyka B, Dubin G (2010) Exfoliative toxins of Staphylococcus aureus. Toxins (Basel) 2:1148–1165CrossRefGoogle Scholar
  78. 78.
    Amagai M, Yamaguchi T, Hanakawa Y, Nishifuji K, Sugai M, Stanley JR (2002) Staphylococcal exfoliative toxin B specifically cleaves desmoglein 1. J Invest Dermatol 118:845–850CrossRefPubMedGoogle Scholar
  79. 79.
    Getsios S, Amargo EV, Dusek RL, Ishii K, Sheu L, Godsel LM, Green KJ (2004) Coordinated expression of desmoglein 1 and desmocollin 1 regulates intercellular adhesion. Differentiation 72:419–433CrossRefPubMedGoogle Scholar
  80. 80.
    Lisa RWP, Delia MG, Markus W, Carleen MC (2000) Recombinant Staphylococcus aureus exfoliative toxins are not bacterial superantigens. Infect Immun 68:3048–3052CrossRefGoogle Scholar
  81. 81.
    Nishifuji K, Sugai M, Amagai M (2008) Staphylococcal exfoliative toxins: “molecular scissors” of bacteria that attack the cutaneous defense barrier in mammals. J Dermatol Sci 49:21–31CrossRefPubMedGoogle Scholar
  82. 82.
    Pimentel de Araujo F, Tinelli M, Battisti A, Ercoli A, Anesi A, Pantosti A, Monaco M (2018) An outbreak of skin infections in neonates due to a Staphylococcus aureus strain producing the exfoliative toxin A. Infection 46:49–54CrossRefPubMedGoogle Scholar
  83. 83.
    Vath GM, Earhart CA, Monie DD, Iandolo JJ, Schlievert PM, Ohlendorf DH (1999) The crystal structure of exfoliative toxin B: a superantigen with enzymatic activity. Biochemistry 38:10239–10246CrossRefPubMedGoogle Scholar
  84. 84.
    Dubin G (2002) Extracellular proteases of Staphylococcus spp. Biol Chem 383:1075–1086CrossRefPubMedGoogle Scholar
  85. 85.
    Hanakawa Y, Selwood T, Woo D, Lin C, Schechter NM, Stanley JR (2003) Calcium-dependent conformation of desmoglein 1 is required for its cleavage by exfoliative toxin. J Invest Dermatol 121:383–389CrossRefPubMedGoogle Scholar
  86. 86.
    Ladhani S, Poston SM, Joannou CL, Evans RW (1999) Staphylococcal scalded skin syndrome: exfoliative toxin A (ETA) induces serine protease activity when combined with A431 cells. Acta Paediatr 88:776–779CrossRefPubMedGoogle Scholar
  87. 87.
    Katayama Y, Baba T, Sekine M, Fukuda M, Hiramatsu K (2013) Betahemolysin promotes skin colonization by Staphylococcus aureus. J Bacteriol 195:1194–1203CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Baba T, Bae T, Schneewind O, Takeuchi F, Hiramatsu K (2008) Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190:300–310CrossRefPubMedGoogle Scholar
  89. 89.
    Zdzalik M, Karim AY, Wolski K, Buda P, Wojcik K, Brueggemann S, Wojciechowski P, Eick S, Calander AM et al (2012) Prevalence of genes encoding extracellular proteases in Staphylococcus aureus—important targets triggering immune response in vivo. FEMS Immunol Med Microbiol 66:220–229CrossRefPubMedGoogle Scholar
  90. 90.
    Reed SB, Wesson CA, Liou LE, Trumble WR, Schlievert PM, Bohach GA, Bayles KW (2001) Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect Immun 69:1521–1527CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Holtfreter S, Nguyen TT, Wertheim H, Steil L, Kusch H, Truong QP, Engelmann S, Hecker M, Völker U, van Belkum A, Bröker BM (2009) Human immune proteome in experimental colonization with Staphylococcus aureus. Clin Vaccine Immunol 16:1607–1614CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Popowicz GM, Dubin G, Stec-Niemczyk J, Czarny A, Dubin A, Potempa J, Holak TA (2006) Functional and structural characterization of Spl proteases from Staphylococcus aureus. J Mol Biol 358:270–279CrossRefPubMedGoogle Scholar
  93. 93.
    Zdzalik M, Kalinska M, Wysocka M, Stec-Niemczyk J, Cichon P, Stach N, Gruba N, Stennicke HR, Jabaiah A et al (2013) Biochemical and structural characterization of SplD protease from Staphylococcus aureus. PLoS One 8:e76812CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Hayashida A, Bartlett AH, Foster TJ, Park PW (2009) Staphylococcus aureus beta-toxin induces lung injury through syndecan-1. Am J Pathol 174:509–518CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Nygaard TK, Pallister KB, Ruzevich P, Griffith S, Vuong C, Voyich JM (2010) SaeR binds a consensus sequence within virulence gene promoters to advance USA300 pathogenesis. J Infect Dis 201:241–254CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Diep BA, Afasizheva A, Le HN, Kajikawa O, Matute-Bello G, Tkaczyk C, Sellman B, Badiou C, Lina G, Chambers HF (2013) Effects of linezolid on suppressing in vivo production of staphylococcal toxins and improving survival outcomes in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia. J Infect Dis 208:75–82CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Pustelny K, Stach N, Wladyka B, Dubin A, Dubin G (2014) Evaluation of P1′ substrate specificity of staphylococcal SplB protease. Acta Biochim Pol 61:149–152CrossRefPubMedGoogle Scholar
  98. 98.
    Stec-Niemczyk J, Pustelny K, Kisielewska M, Bista M, Boulware KT, Stennicke HR, Thogersen IB, Daugherty PS et al (2009) Structural and functional characterization of SplA, an exclusively specific protease of Staphylococcus aureus. Biochem J 419:555–564CrossRefPubMedGoogle Scholar
  99. 99.
    Dubin G, Stec-Niemczyk J, Kisielewska M, Pustelny K, Popowicz GM, Bista M, Kantyka T, Boulware KT, Stennicke HR, Czarna A et al (2008) Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln. J Mol Biol 379:343–356CrossRefPubMedGoogle Scholar
  100. 100.
    Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, van Crombruggen K et al (2016) Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol 9:492–500Google Scholar
  101. 101.
    Stentzel S, Teufelberger A, Nordengrün M, Kolata J, Schmidt F, van Crombruggen K, Michalik S, Kumpfmüller J, Tischer S et al (2017) Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol 139:492–500CrossRefPubMedGoogle Scholar
  102. 102.
    Pang YY, Schwartz J, Thoendel M, Ackermann LW, Horswill AR, Nauseef WM (2010) agr-Dependent interactions of Staphylococcus aureus USA300 with human polymorphonuclear neutrophils. J Innate Immun 2:546–559CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kebaier C, Chamberland RR, Allen IC, Gao X, Broglie PM, Hall JD, Jania C, Doerschuk CM, Tilley SL, Duncan JA (2012) Staphylococcus aureus α-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis 205:807–817CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Paharik AE, Salgado-Pabon W, Meyerholz DK, White MJ, Schlievert PM, Horswill AR (2016) The Spl serine proteases modulate Staphylococcus aureus protein production and virulence in a rabbit model of pneumonia mSphere 1(5)Google Scholar
  105. 105.
    O’Brien L, Kerrigan SW, Kaw G, Hogan M, Penadés J, Litt D, Fitzgerald DJ, Foster TJ, Cox D (2002) Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol Microbiol 44:1033–1044CrossRefPubMedGoogle Scholar
  106. 106.
    Davies JR, Kirkham S, Svitacheva N, Thornton DJ, Carlstedt I (2007) MUC16 is produced in tracheal surface epithelium and submucosal glands and is present in secretions from normal human airway and cultured bronchial epithelial cells. Int J Biochem Cell Biol 39:1943–1954CrossRefPubMedGoogle Scholar
  107. 107.
    Blalock TD, Spurr-Michaud SJ, Tisdale AS, Gipson IK (2008) Release of membrane-associated mucins from ocular surface epithelia. Invest Ophthalmol Vis Sci 49:1864–1871CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Govindarajan B, Menon BB, Spurr-Michaud S, Rastogi K, Gilmore MS, Argüeso P, Gipson IK (2012) A metalloproteinase secreted by Streptococcus pneumoniae removes membrane mucin MUC16 from the epithelial glycocalyx barrier. PLoS One 7:e32418CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Gipson IK, Spurr-Michaud S, Tisdale A, Menon BB (2014) Comparison of the transmembrane mucins MUC1 and MUC16 in epithelial barrier function. PLoS One 9:e100393CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Haridas D, Ponnusamy MP, Chugh S, Lakshmanan I, Seshacharyulu P, Batra SK (2014) MUC16: molecular analysis and its functional implications in benign and malignant conditions. FASEB J 28:4183–4199CrossRefPubMedGoogle Scholar
  111. 111.
    Belyi Y, Rybolovlev I, Polyakov N, Chernikova A, Tabakova I, Gintsburg A (2018) Staphylococcus aureus surface protein G is an immunodominant protein and a possible target in an anti-biofilm drug development. Open Microbiol J 12:94–106CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Ewa B, Maciej W, Marcin S, Grzegorz D, Michał Z, Jan P, Józef O (2012) The development of first Staphylococcus aureus SplB protease inhibitors: phosphonic analogues of glutamine. Bioorg Med Chem Lett 22:5574–5578CrossRefPubMedGoogle Scholar
  113. 113.
    Bachert C, van Steen K, Zhang N, Holtappels G, Cattaert T, Maus B, Buhl R, Taube C, Korn S, Kowalski M, Bousquet J, Howarth P (2012) Specific IgE against Staphylococcus aureus enterotoxins: an independent risk factor for asthma. J Allergy Clin Immunol 130:376–381CrossRefPubMedGoogle Scholar
  114. 114.
    Huvenne W, Hellings PW, Bachert C (2013) Role of staphylococcal superantigens in airway disease. Int Arch Allergy Immunol 161:304–314CrossRefPubMedGoogle Scholar
  115. 115.
    Teufelberger AR, Nordengrün M, Braun H, Maes T, De Grove K, Holtappels G, O’Brien C, Provoost S, Hammad H, Gonçalves A et al (2018) The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D. J Allergy Clin Immunol 141:549–559CrossRefPubMedGoogle Scholar
  116. 116.
    Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP, Cayrol C (2012) IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA 109:1673–1678CrossRefPubMedGoogle Scholar
  117. 117.
    Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16:45–56CrossRefPubMedGoogle Scholar
  118. 118.
    van Helden MJ, Lambrecht BN (2013) Dendritic cells in asthma. Curr Opin Immunol 25:745–754CrossRefPubMedGoogle Scholar
  119. 119.
    Rank MA, Kobayashi T, Kozaki H, Bartemes KR, Squillace DL, Kita H (2009) IL-33-activated dendritic cells induce an atypical TH2-type response. J Allergy Clin Immunol 123:1047–1054CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Besnard AG, Togbe D, Guillou N, Erard F, Quesniaux V, Ryffel B (2011) IL-33-activated dendritic cells are critical for allergic airway inflammation. Eur J Immunol 41:1675–1686CrossRefPubMedGoogle Scholar
  121. 121.
    Maes T, Provoost S, Lanckacker EA, Cataldo DD, Vanoirbeek JA, Nemery B, Tournoy KG, Joos GF (2010) Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation. Respir Res 11:7CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Huvenne W, Callebaut I, Plantinga M, Vanoirbeek JA, Krysko O, Bullens DM, Gevaert P, Van Cauwenberge P, Lambrecht BN, Ceuppens JL, Bachert C, Hellings PW (2010) Staphylococcus aureus enterotoxin B facilitates allergic sensitization in experimental asthma. Clin Exp Allergy 40:1079–1090CrossRefPubMedGoogle Scholar
  123. 123.
    Krysko O, Maes T, Plantinga M, Holtappels G, Imiru R, Vandenabeele P, Joos G, Krysko DV, Bachert C (2013) The adjuvant-like activity of staphylococcal enterotoxin B in a murine asthma model is independent of IL-1R signaling. Allergy 68:446–453CrossRefPubMedGoogle Scholar
  124. 124.
    Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15:410–416CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Matsui K, Nishikawa A (2012) Peptidoglycan from Staphylococcus aureus induces TH2 immune response in mice. J Investig Allergol Clin Immunol 22:80–86PubMedGoogle Scholar
  126. 126.
    Matsuwaki Y, Wada K, White TA, Benson LM, Charlesworth MC, Checkel JL et al (2009) Recognition of fungal protease activities induces cellular activation and eosinophil-derived neurotoxin release in human eosinophils. J Immunol 183:6708–6716CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Boitano S, Flynn AN, Schulz SM, Hoffman J, Price TJ, Vagner J (2011) Potent agonists of the protease activated receptor 2 (PAR2). J Med Chem 54:1308–1313CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    de Boer JD, Van’t Veer C, Stroo I, van der Meer AJ, de Vos AF, van der Zee JS, Roelofs JJ5, van der Poll T (2014) Protease-activated receptor-2 deficient mice have reduced house dust mite-evoked allergic lung inflammation. Innate Immun 20:618–625CrossRefPubMedGoogle Scholar
  129. 129.
    Takai T, Kato T, Ota M, Yasueda H, Kuhara T, Okumura K, Ogawa H (2005) Recombinant Der p 1 and Der f 1 with in vitro enzymatic activity to cleave human CD23, CD25 and alpha1-antitrypsin, and in vivo IgE-eliciting activity in mice. Int Arch Allergy Immunol 137:194–200CrossRefPubMedGoogle Scholar
  130. 130.
    Hartl D, Latzin P, Hordijk P, Marcos V, Rudolph C, Woischnik M, Krauss-Etschmann S, Koller B, Reinhardt D, Roscher AA, Roos D, Griese M (2007) Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 13:1423–1430CrossRefPubMedGoogle Scholar
  131. 131.
    Rieneck K, Renneberg J, Diamant M, Gutschik E, Bendtzen K (1997) Molecular cloning and expression of a novel Staphylococcus aureus antigen. Biochim Biophys Acta 1350:128–132CrossRefPubMedGoogle Scholar
  132. 132.
    Stach N, Kalinska M, Zdzalik M, Kitel R, Karim A, Serwin K, Rut W, Larsen K, Jabaiah A, Firlej M, Wladyka B, Daugherty P, Stennicke H, Drag M, Potempa J, Dubin G (2018) Unique substrate specificity of SplE serine protease from Staphylococcus aureus. Structure 26:572–579.e4CrossRefPubMedGoogle Scholar
  133. 133.
    Banbula A, Potempa J, Travis J, Fernandez-Catalán C, Mann K, Huber R, Bode W, Medrano F (1998) Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution. Structure 6:1185–1193CrossRefPubMedGoogle Scholar
  134. 134.
    Nickerson NN, Joag V, McGavin MJ (2008) Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain. Mol Microbiol 69:1530–1543CrossRefPubMedGoogle Scholar
  135. 135.
    Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH (2011) Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186:6445–6453CrossRefPubMedGoogle Scholar
  136. 136.
    de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Postma B, Poppelier MJ, van Galen JC, Prossnitz ER, van Strijp JA, de Haas CJ, van Kessel KP (2004) Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J Immunol 172:6994–7001CrossRefPubMedGoogle Scholar
  138. 138.
    McAleese FM, Walsh EJ, Sieprawska M, Potempa J, Foster TJ (2001) Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276:29969–29978CrossRefPubMedGoogle Scholar
  139. 139.
    Lauderdale KJ, Boles BR, Cheung AL, Horswill AR (2009) Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun 77:1623–1635CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Loughran AJ, Atwood DN, Anthony AC, Harik NS, Spencer HJ, Beenken KE, Smeltzer MS (2014) Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. Microbiologyopen 3:897–909CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Burlak C, Hammer CH, Robinson MA, Whitney AR, McGavin MJ, Kreiswirth BN, Deleo FR (2007) Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell Microbiol 9:1172–1190CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Kubica M, Guzik K, Koziel J, Zarebski M, Richter W, Gajkowska B, Golda A, Maciag-Gudowska A, Brix K, Shaw L, Foster T, Potempa J (2008) A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One 3:e1409CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Beaufort N, Wojciechowski P, Sommerhoff CP, Szmyd G, Dubin G, Eick S, Kellermann J, Schmitt M, Potempa J, Magdolen V (2008) The human fibrinolytic system is a target for the staphylococcal metalloprotease aureolysin. Biochem J 410:157–165CrossRefPubMedGoogle Scholar
  144. 144.
    Saravanan R, Adav SS, Choong YK, van der Plas MJA, Petrlova J, Kjellström S, Sze SK, Schmidtchen A (2017) Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo. Sci Rep 7:13136CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Singh VK, Carlos MR, Singh K (2010) Physiological significance of the peptidoglycan hydrolase, LytM, in Staphylococcus aureus. FEMS Microbiol Lett 311:167–175CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Firczuk M, Mucha A, Bochtler M (2005) Crystal structures of active LytM. J Mol Biol 354:578–590CrossRefPubMedGoogle Scholar
  147. 147.
    Odintsov SG, Sabala I, Marcyjaniak M, Bochtler M (2004) Latent LytM at 1.3A resolution. J Mol Biol 335:775–785CrossRefPubMedGoogle Scholar
  148. 148.
    Osipovitch DC, Griswold KE (2015) Fusion with a cell wall binding domain renders autolysin LytM a potent anti-Staphylococcus aureus agent. FEMS Microbiol Lett 362:1–7CrossRefPubMedGoogle Scholar
  149. 149.
    Bochtler M, Odintsov SG, Marcyjaniak M, Sabala I (2004) Similar active sites in lysostaphins and d-Ala-d-Ala metallopeptidases. Protein Sci 13:854–861CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Pieper R, Gatlin-Bunai CL, Mongodin EF, Parmar PP, Huang ST, Clark DJ, Fleischmann RD, Gill SR, Peterson SN (2006) Comparative proteomic analysis of Staphylococcus aureus strains with differences in resistance to the cell wall-targeting antibiotic vancomycin. Proteomics 6:4246–4258CrossRefPubMedGoogle Scholar
  151. 151.
    Renzoni A, Barras C, François P, Charbonnier Y, Huggler E, Garzoni C, Kelley WL, Majcherczyk P, Schrenzel J, Lew DP, Vaudaux P (2006) Transcriptomic and functional analysis of an autolysis-deficient, teicoplanin-resistant derivative of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 50:3048–3061CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Ingavale SS, Van Wamel W, Cheung AL (2003) Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Mol Microbiol 48:1451–1466CrossRefPubMedGoogle Scholar
  153. 153.
    Borišek J, Pintar S, Ogrizek M, Grdadolnik SG, Hodnik V, Turk D, Perdih A, Novič M (2018) Discovery of (phenylureido)piperidinyl benzamides as prospective inhibitors of bacterial autolysin E from Staphylococcus aureus. J Enzyme Inhib Med Chem 33:1239–1247CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Porayath C, Suresh MK, Biswas R, Nair BG, Mishra N, Pal S (2018) Autolysin mediated adherence of Staphylococcus aureus with Fibronectin, Gelatin and Heparin. Int J Biol Macromol 110:179–184CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Binsker U, Palankar R, Wesche J, Kohler TP, Prucha J, Burchhardt G, Rohde M, Schmidt F, Bröker BM, Mamat U, Pané-Farré J, Graf A, Ebner P, Greinacher A, Hammerschmidt S (2018) Secreted immunomodulatory proteins of Staphylococcus aureus activate platelets and induce platelet aggregation. Thromb Haemost 118:745–757CrossRefPubMedGoogle Scholar
  156. 156.
    Tiwari KB, Gatto C, Walker S, Wilkinson BJ (2018) Exposure of Staphylococcus aureus to targocil blocks translocation of the major autolysin Atl across the membrane, resulting in a significant decrease in autolysis. Antimicrob Agents Chemother 62:e00323–e00318CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Pietiäinen M, François P, Hyyryläinen HL, Tangomo M, Sass V, Sahl HG, Schrenzel J, Kontinen VP (2009) Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genom 10:429CrossRefGoogle Scholar
  158. 158.
    Thumm G, Götz F (1997) Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol Microbiol 23:1251–1265CrossRefPubMedGoogle Scholar
  159. 159.
    Raulinaitis V, Tossavainen H, Aitio O, Juuti JT, Hiramatsu K, Kontinen V, Permi P (2017) Identification and structural characterization of LytU, a unique peptidoglycan endopeptidase from the lysostaphin family. Sci Rep 7:6020CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    McAdow M, Missiakas DM, Schneewind O (2012) Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J Innate Immun 4:141–148CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, Kawabata S, Huber R, Bode W, Bock PE (2003) Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425:535–539CrossRefPubMedGoogle Scholar
  162. 162.
    Cheung AI, Projan SJ, Edelstein RE, Fischetti VA (1995) Cloning, expression, and nucleotide sequence of a Staphylococcus aureus gene (fbpA) encoding a fibrinogen-binding protein. Infect Immun 63:1914–1920PubMedPubMedCentralGoogle Scholar
  163. 163.
    Kawabata S, Morita T, Iwanaga S, Igarashi H (1985) Enzymatic properties of staphylothrombin, an active molecular complex formed between staphylocoagulase and human prothrombin. J Biochem 98:1603–1614CrossRefPubMedGoogle Scholar
  164. 164.
    Panizzi P, Friedrich R, Fuentes-Prior P, Richter K, Bock PE, Bode W (2006) Fibrinogen substrate recognition by staphylocoagulase (pro)thrombin complexes. J Biol Chem 281:1179–1187CrossRefPubMedGoogle Scholar
  165. 165.
    Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O (2010) Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6:e1001036CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Walker JN, Crosby HA, Spaulding AR, Salgado-Pabón W, Malone CL, Rosenthal CB, Schlievert PM, Boyd JM, Horswill AR (2013) The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis. PLoS Pathog 9:e1003819CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Hijikata-Okunomiya A, Kataoka N (2003) Argatroban inhibits staphylothrombin. J Thromb Haemost 1:2060–2061CrossRefPubMedGoogle Scholar
  168. 168.
    Vanassche T, Verhaegen J, Peetermans WE, Hoylaerts MF, Verhamme P (2010) Dabigatran inhibits Staphylococcus aureus coagulase activity. J Clin Microbiol 48:4248–4250CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Bjerketorp J, Nilsson M, Ljungh A, Flock JI, Jacobsson K, Frykberg L (2002) A novel von Willebrand factor binding protein expressed by Staphylococcus aureus. Microbiology 148:2037–2044CrossRefPubMedGoogle Scholar
  170. 170.
    Bjerketorp J, Jacobsson K, Frykberg L (2004) The von Willebrand factor-binding protein (vWbp) of Staphylococcus aureus is a coagulase. FEMS Microbiol Lett 234:309–314CrossRefPubMedGoogle Scholar
  171. 171.
    Kroh HK, Panizzi P, Bock PE (2009) Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci USA 1106:7786–7791CrossRefGoogle Scholar
  172. 172.
    Thomer L, Schneewind O, Missiakas D (2013) Multiple ligands of von Willebrand factor-binding protein (vWbp) promote Staphylococcus aureus clot formation in human plasma. J Biol Chem 288:28283–28292CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Claes J, Liesenborghs L, Peetermans M, Veloso TR, Missiakas D, Schneewind O, Mancini S, Entenza JM, Hoylaerts MF, Heying R, Verhamme P, Vanassche T (2017) Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall. J Thromb Haemost 15:1009–1019CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Claes J, Ditkowski B, Liesenborghs L, Veloso TR, Entenza JM, Moreillon P, Vanassche T, Verhamme P, Hoylaerts MF, Heying R (2018) Assessment of the dual role of clumping factor A in S. aureus adhesion to endothelium in absence and presence of plasma. Thromb Haemost 118:1230–1241CrossRefPubMedGoogle Scholar
  175. 175.
    McAdow M, Kim HK, Dedent AC, Hendrickx AP, Schneewind O, Missiakas DM (2011) Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog 7:e1002307CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J, McElvania-Tekippe E, Ting JP, Duncan JA (2009) Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One 4:e7446CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Cheung AL, Projan SJ (1994) Cloning and sequencing of sarA of Staphylococcus aureus, a gene required for the expression of agr. J Bacteriol 176:4168–4172CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Xiong YQ, Willard J, Yeaman MR, Cheung AL, Bayer AS (2006) Regulation of Staphylococcus aureus alpha-toxin gene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis. J Infect Dis 194:1267–1275CrossRefPubMedGoogle Scholar
  179. 179.
    Zhou Y, Chen C, Pan J, Deng X, Wang J (2018) Epigallocatechin gallate can attenuate human alveolar epithelial cell injury induced by alpha-haemolysin. Microb Pathog 115:222–226CrossRefPubMedGoogle Scholar
  180. 180.
    Horn J, Klepsch M, Manger M, Wolz C, Rudel T, Fraunholz M (2018) The long non-coding RNA SSR42 controls Staphylococcus aureus α-toxin transcription in response to environmental stimuli. J Bacteriol.  https://doi.org/10.1128/JB.00252-18 (Epub ahead of print) CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Essmann F, Bantel H, Totzke G, Engels IH, Sinha B, Schulze-Osthoff K, Jänicke RU (2003) Staphylococcus aureus alpha-toxin-induced cell death: predominant necrosis despite apoptotic caspase activation. Cell Death Differ 10:1260–1272CrossRefPubMedGoogle Scholar
  182. 182.
    Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, Bubeck Wardenburg J (2011) A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17:1310–1314CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Smith KM, Gaultier A, Cousin H, Alfandari D, White JM, DeSimone DW (2002) The cysteine-rich domain regulates ADAM protease function in vivo. J Cell Biol 159:893–902CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Moss ML, Bartsch JW (2004) Therapeutic benefits from targeting of ADAM family members. Biochemistry 43:7227–7235CrossRefPubMedGoogle Scholar
  185. 185.
    Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43CrossRefPubMedGoogle Scholar
  186. 186.
    Wilke GA, Bubeck Wardenburg J (2010) Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci USA 107:13473–13478CrossRefPubMedGoogle Scholar
  187. 187.
    Olaniyi RO, Pancotto L, Grimaldi L, Bagnoli F (2018) Deciphering the pathological role of staphylococcal α-toxin and panton-valentine leukocidin using a novel Ex Vivo human skin model. Front Immunol 9:951CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Smith IDM, Milto KM, Doherty CJ, Amyes SGB, Simpson AHRW, Hall AC (2018) A potential key role for alpha-haemolysin of Staphylococcus aureus in mediating chondrocyte death in septic arthritis. Bone Jt Res 7:457–467CrossRefGoogle Scholar
  189. 189.
    Keitsch S, Riethmüller J, Soddemann M, Sehl C, Wilker B, Edwards MJ, Caldwell CC, Fraunholz M, Gulbins E, Becker KA (2018) Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of α-toxin. Biol Chem.  https://doi.org/10.1515/hsz-2018-0161 (Epub ahead of print) CrossRefPubMedGoogle Scholar
  190. 190.
    Surewaard BGJ, Thanabalasuriar A, Zeng Z, Tkaczyk C, Cohen TS, Bardoel BW, Jorch SK, Deppermann C, Bubeck Wardenburg J, Davis RP, Jenne CN, Stover KC, Sellman BR, Kubes P (2018) α-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe 24:271–284CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Ortines RV, Liu H, Cheng LI, Cohen TS, Lawlor H, Gami A, Wang Y, Dillen CA, Archer NK, Miller RJ, Ashbaugh AG, Pinsker BL, Marchitto MC, Tkaczyk C, Stover CK, Sellman BR, Miller LS (2018) Neutralizing alpha-toxin accelerates healing of Staphylococcus aureus-infected wounds in nondiabetic and diabetic mice. Antimicrob Agents Chemother 62:e02288–e02217CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Tkaczyk C, Semenova E, Shi YY, Rosenthal K, Oganesyan V, Warrener P, Stover CK, Sellman BR (2018) Alanine scanning mutagenesis of the MEDI4839 (Suvratoxumab) epitope reduces alpha toxin lytic activity in vitro and S. aureus fitness in infection models. Antimicrob Agents Chemother.  https://doi.org/10.1128/AAC.01033-18 (Epub ahead of print) CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Saleh FA, Freer JH (1984) Inhibition of secretion of staphylococcal alpha toxin by cerulenin. Med Microbiol 18:205–216CrossRefGoogle Scholar
  194. 194.
    Teng Z, Shi D, Liu H, Shen Z, Zha Y, Li W, Deng X, Wang J (2017) Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression. Appl Microbiol Biotechnol 101:6697–6703CrossRefPubMedGoogle Scholar
  195. 195.
    Moyano AJ, Racca AC, Soria G, Saka HA, Andreoli V, Smania AM, Sola C, Bocco JL (2018) c-Jun proto-oncoprotein plays a protective role in lung epithelial cells exposed to staphylococcal α-toxin. Front Cell Infect Microbiol 8:170CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Jin Y, Li M, Shang Y, Liu L, Shen X, Lv Z, Hao Z, Duan J, Wu Y, Chen C, Pan J, Yu F (2018) Sub-Inhibitory concentrations of mupirocin strongly inhibit alpha-toxin production in high-level mupirocin-resistant MRSA by down-regulating agr, saeRS, and sarA. Front Microbiol 9:993CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Xuewen H, Ping O, Zhongwei Y, Zhongqiong Y, Hualin F, Juchun L, Changliang H, Gang S, Zhixiang Y, Xu S, Yuanfeng Z, Lixia L, Lizi Y (2018) Eriodictyol protects against Staphylococcus aureus-induced lung cell injury by inhibiting alpha-hemolysin expression. World J Microbiol Biotechnol 34:64CrossRefPubMedGoogle Scholar
  198. 198.
    Chen Y, Chen M, Zhang Y, Lee JH, Escajadillo T, Gong H, Fang RH, Gao W, Nizet V, Zhang L (2018) Broad-spectrum neutralization of pore-forming toxins with human erythrocyte membrane-coated nanosponges. Adv Healthc Mater 7:e1701366CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Ziebandt AK, Weber H, Rudolph J, Schmid R, Höper D, Engelmann S, Hecker M (2001) Extracellular proteins of Staphylococcus aureus and the role of SarA and sigma B. Proteomics 1:480–493CrossRefPubMedGoogle Scholar
  200. 200.
    Bokarewa MI, Jin T, Tarkowski A (2006) Staphylococcus aureus: Staphylokinase. Int J Biochem Cell Biol 38:504–509CrossRefPubMedGoogle Scholar
  201. 201.
    Parry MA, Fernandez-Catalan C, Bergner A, Huber R, Hopfner KP, Schlott B, Gührs KH, Bode W (1998) The ternary microplasmin-staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat Struct Biol 5:917–923CrossRefPubMedGoogle Scholar
  202. 202.
    Silence K, Collen D, Lijnen HR (1993) Interaction between staphylokinase, plasmin(ogen), and alpha 2-antiplasmin. Recycling of staphylokinase after neutralization of the plasmin-staphylokinase complex by alpha 2-antiplasmin. J Biol Chem 268:9811–9816PubMedGoogle Scholar
  203. 203.
    Sakharov DV, Lijnen HR, Rijken DC (1996) Interactions between staphylokinase, plasmin(ogen), and fibrin. Staphylokinase discriminates between free plasminogen and plasminogen bound to partially degraded fibrin. J Biol Chem 271:27912–27928CrossRefPubMedGoogle Scholar
  204. 204.
    Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P (2016) Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit Rev Microbiol 42:866–882CrossRefPubMedGoogle Scholar
  205. 205.
    Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA (2005) Anti-opsonic properties of staphylokinase. Microbes Infect 7:476–484CrossRefPubMedGoogle Scholar
  206. 206.
    Santala A, Saarinen J, Kovanen P, Kuusela P (1999) Activation of interstitial collagenase, MMP-1, by Staphylococcus aureus cells having surface-bound plasmin: a novel role of plasminogen receptors of bacteria. FEBS Lett 461:153–156CrossRefPubMedGoogle Scholar
  207. 207.
    Kwiecinski J, Peetermans M, Liesenborghs L, Na M, Björnsdottir H, Zhu X, Jacobsson G, Johansson BR, Geoghegan JA, Foster TJ et al (2016) Staphylokinase control of Staphylococcus aureus biofilm formation and detachment through host plasminogen activation. J Infect Dis 213:139–148CrossRefPubMedGoogle Scholar
  208. 208.
    Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176CrossRefPubMedGoogle Scholar
  209. 209.
    Nguyen LT, Vogel HJ (2016) Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Sci Rep 6:31817CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Braff MH, Jones AL, Skerrett SJ, Rubens CE (2007) Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis. J Infect Dis 195:1365–1372CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Geisbrecht BV, Hamaoka BY, Perman B, Zemla A, Leahy DJ (2005) The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens. J Biol Chem 280:17243–17250CrossRefPubMedGoogle Scholar
  212. 212.
    Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6:541–550CrossRefPubMedGoogle Scholar
  213. 213.
    Stapels DA, Ramyar KX, Bischoff M, von Köckritz-Blickwede M, Milder FJ, Ruyken M, Eisenbeis J, McWhorter WJ et al (2014) Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc Natl Acad Sci USA 111:13187–13192CrossRefPubMedGoogle Scholar
  214. 214.
    Woehl JL, Stapels DAC, Garcia BL, Ramyar KX, Keightley A, Ruyken M, Syriga M, Sfyroera G, Weber AB et al (2014) The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase. J Immunol 193:6161–6171CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Palma M, Haggar A, Flock JI (1999) Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. J Bacteriol 181:2840–2845PubMedPubMedCentralGoogle Scholar
  216. 216.
    Chavakis T, Hussain M, Kanse SM, Peters G, Bretzel RG, Flock JI, Herrmann M, Preissner KT (2002) Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 8:687–693CrossRefPubMedGoogle Scholar
  217. 217.
    Edwards AM, Bowden MG, Brown EL, Laabei M, Massey RC (2012) Staphylococcus aureus extracellular adherence protein triggers TNFα release, promoting attachment to endothelial cells via protein A. PLoS One 7:e43046CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Eisenbeis J, Saffarzadeh M, Peisker H, Jung P, Thewes N, Preissner KT, Herrmann M, Molle V, Geisbrecht BV, Jacobs K, Bischoff M (2018) The Staphylococcus aureus extracellular adherence protein Eap Is a DNA binding protein capable of blocking neutrophil extracellular trap formation. Front Cell Infect Microbiol 8:235CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Sabat A, Melles DC, Martirosian G, Grundmann H, van Belkum A, Hryniewicz W (2006) Distribution of the serine-aspartate repeat protein-encoding sdr genes among nasal-carriage and invasive Staphylococcus aureus strains. J Clin Microbiol 44:1135–1138CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Hazenbos WL, Kajihara KK, Vandlen R, Morisaki JH, Lehar SM, Kwakkenbos MJ, Beaumont T, Bakker AQ, Phung Q et al (2013) Novel staphylococcal glycosyltransferases SdgA and SdgB mediate immunogenicity and protection of virulence-associated cell wall proteins. PLoS Pathog 9:e1003653CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Thomer L, Becker S, Emolo C, Quach A, Kim HK, Rauch S, Anderson M, Leblanc JF, Schneewind O, Faull KF, Missiakas D (2014) N-acetylglucosaminylation of serine-aspartate repeat proteins promotes Staphylococcus aureus bloodstream infection. J Biol Chem 289:3478–3486CrossRefPubMedGoogle Scholar
  222. 222.
    Chen H, Ricklin D, Hammel M, Garcia BL, McWhorter WJ, Sfyroera G, Wu YQ, Tzekou A, Li S, Geisbrecht BV, Woods VL Jr, Lambris JD (2010) Allosteric inhibition of complement function by a staphylococcal immune evasion protein. Proc Natl Acad Sci USA 107:17621–17626CrossRefPubMedGoogle Scholar
  223. 223.
    Lee LYL, Liang X, Hook M, Brown EL (2004) Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb). J Biol Chem 279:50710–50716CrossRefPubMedGoogle Scholar
  224. 224.
    Ko YP, Kang M, Ganesh VK, Ravirajan D, Li B, Höök M (2016) Coagulase and Efb of Staphylococcus aureus have a common fibrinogen binding motif. MBio 7:e01885–e01815CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Posner MG, Upadhyay A, Abubaker AA, Fortunato TM, Vara D, Canobbio I, Bagby S, Pula G (2016) Extracellular fibrinogen-binding protein (Efb) from Staphylococcus aureus inhibits the formation of platelet-leukocyte complexes. J Biol Chem 291:2764–2776CrossRefPubMedGoogle Scholar
  226. 226.
    Lee LY, Miyamoto YJ, McIntyre BW, Hook M, McCrea KW, McDevitt D, Brown EL (2002) The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J Clin Invest 110:1461–1471CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Herman-Bausier P, Valotteau C, Pietrocola G, Rindi S, Alsteens D, Foster TJ, Speziale P, Dufrêne YF (2016) Mechanical strength and inhibition of the Staphylococcus aureus collagen-binding protein Cna. MBio 7:e01529–e01516CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Madani A, Garakani K, Mofrad MRK (2017) Molecular mechanics of Staphylococcus aureus adhesin, CNA, and the inhibition of bacterial adhesion by stretching collagen. PLoS One 12:e0179601CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Gaboriaud C, Thielens NM, Gregory LA, Rossi V, Fontecilla-Camps JC, Arlaud GJ (2004) Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends Immunol 25:368–373CrossRefPubMedGoogle Scholar
  230. 230.
    Wallis R, Mitchell DA, Schmid R, Schwaeble WJ, Keeble AH (2010) Paths reunited: Initiation of the classical and lectin pathways of complement activation. Immunobiology 215:1–11CrossRefPubMedGoogle Scholar
  231. 231.
    Valotteau C, Prystopiuk V, Pietrocola G, Rindi S, Peterle D, De Filippis V, Foster TJ, Speziale P, Dufrêne YF (2017) Single-cell and single-molecule analysis unravels the multifunctionality of the Staphylococcus aureus collagen-binding protein cna. ACS Nano 11:2160–2170CrossRefPubMedGoogle Scholar
  232. 232.
    Rooijakkers SH, Milder FJ, Bardoel BW, Ruyken M, van Strijp JA, Gros P (2007) Staphylococcal complement inhibitor: structure and active sites. J Immunol 179:2989–2998CrossRefPubMedGoogle Scholar
  233. 233.
    Jongerius I, Puister M, Wu J, Ruyken M, van Strijp JA, Rooijakkers SH (2010) Staphylococcal complement inhibitor modulates phagocyte responses by dimerization of convertases. J Immunol 184:420–425CrossRefPubMedGoogle Scholar
  234. 234.
    Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, van Wamel WJ, van Kessel KP, van Strijp JA (2005) Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6:920–927CrossRefPubMedGoogle Scholar
  235. 235.
    Hoekstra H, Romero Pastrana F, Bonarius HPJ, van Kessel KPM, Elsinga GS, Kooi N, Groen H, van Dijl JM, Buist G (2018) A human monoclonal antibody that specifically binds and inhibits the staphylococcal complement inhibitor protein SCIN. Virulence 9:70–82CrossRefPubMedGoogle Scholar
  236. 236.
    Langley R, Patel D, Jackson N, Clow F, Fraser JD (2010) Staphylococcal superantigen super-domains in immune evasion. Crit Rev Immunol 30:149–165CrossRefPubMedGoogle Scholar
  237. 237.
    Hermans SJ, Baker HM, Sequeira RP, Langley RJ, Baker EN, Fraser JD (2012) Structural and functional properties of staphylococcal superantigen-like protein 4. Infect Immun 80:4004–4013CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Williams RJ, Ward JM, Henderson B, Poole S, O’Hara BP, Wilson M, Nair SP (2000) Identification of a novel gene cluster encoding staphylococcal exotoxin-like proteins: characterization of the prototypic gene and its protein product, SET1. Infect Immun 68:4407–4415CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Koymans KJ, Bisschop A, Vughs MM, van Kessel KP, de Haas CJ, van Strijp JA (2016) Staphylococcal superantigen-like protein 1 and 5 (SSL1 & SSL5) limit neutrophil chemotaxis and migration through MMP-inhibition. Int J Mol Sci 17(7):E1072CrossRefPubMedGoogle Scholar
  240. 240.
    Koymans KJ, Goldmann O, Karlsson CAQ, Sital W, Thänert R, Bisschop A, Vrieling M, Malmström J, van Kessel KPM, de Haas CJC, van Strijp JAG, Medina E (2017) The TLR2 antagonist staphylococcal superantigen-like protein 3 acts as a virulence factor to promote bacterial pathogenicity in vivo. J Innate Immun 9:561–573CrossRefPubMedGoogle Scholar
  241. 241.
    Walenkamp AM, Boer IG, Bestebroer J, Rozeveld D, Timmer-Bosscha H, Hemrika W, van Strijp JA, de Haas CJ (2009) Staphylococcal superantigen-like 10 inhibits CXCL12-induced human tumor cell migration. Neoplasia 11:333–344CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Kurisaka C, Oku T, Itoh S, Tsuji T (2018) Role of sialic acid-containing glycans of matrix metalloproteinase-9 (MMP-9) in the interaction between MMP-9 and staphylococcal superantigen-like protein 5. Microbiol Immunol 62:168–175CrossRefPubMedGoogle Scholar
  243. 243.
    Zhao Y, van Kessel KPM, de Haas CJC, Rogers MRC, van Strijp JAG, Haas PA (2018) Staphylococcal superantigen-like protein 13 activates neutrophils via Formyl Peptide Receptor 2. Cell Microbiol 11:e12941CrossRefGoogle Scholar
  244. 244.
    Bestebroer J, Poppelier MJ, Ulfman LH, Lenting PJ, Denis CV, van Kessel KP, van Strijp JA, de Haas CJ (2007) Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 109:2936–2943CrossRefPubMedGoogle Scholar
  245. 245.
    de Haas CJ, Weeterings C, Vughs MM, de Groot PG, Van Strijp JA, Lisman T (2009) Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibalpha and alpha IIb beta 3. J Thromb Haemost 7:1867–1874CrossRefPubMedGoogle Scholar
  246. 246.
    Li Y, Clow F, Fraser JD, Lin F (2018) Therapeutic potential of staphylococcal superantigen-like protein 7 for complement-mediated hemolysis. J Mol Med (Berl) 96:965–974CrossRefGoogle Scholar
  247. 247.
    Itoh S, Yokoyama R, Kamoshida G, Fujiwara T, Okada H, Takii T, Tsuji T, Fujii S, Hashizume H, Onozaki K (2013) Staphylococcal superantigen-like protein 10 (SSL10) inhibits blood coagulation by binding to prothrombin and factor Xa via their γ-carboxyglutamic acid (Gla) domain. J Biol Chem 26(288):21569–21580CrossRefGoogle Scholar
  248. 248.
    Patel D, Wines BD, Langley RJ, Fraser JD (2010) Specificity of staphylococcal superantigen-like protein 10 toward the human IgG1 Fc domain. J Immunol 184:6283–6292CrossRefPubMedGoogle Scholar
  249. 249.
    Valentino MD, Foulston L, Sadaka A, Kos VN, Villet RA, Santa Maria J Jr, Lazinski DW, Camilli A, Walker S, Hooper DC, Gilmore MS (2018) Genes contributing to Staphylococcus aureus fitness in abscess- and infection-related ecologies. MBio 5:e01729–e01714Google Scholar
  250. 250.
    Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K, Gilmore MS, Whiteley M (2017) Co-infecting microbes dramatically alter pathogen gene essentiality during polymicrobial infection. Nat Microbiol 2:17079CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Grosser MR, Paluscio E, Thurlow LR, Dillon MM, Cooper VS, Kawula TH, Richardson AR (2018) Genetic requirements for Staphylococcus aureus nitric oxide resistance and virulence. PLoS Pathog 14:e1006907CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Bioprospection DepartmentCSIR-Central Institute of Medicinal and Aromatic PlantsLucknowIndia
  2. 2.School of Life ScienceJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations