Biogenic Au@ZnO core–shell nanocomposites kill Staphylococcus aureus without provoking nuclear damage and cytotoxicity in mouse fibroblasts cells under hyperglycemic condition with enhanced wound healing proficiency

  • Md. Imran Khan
  • Susanta Kumar Behera
  • Prajita Paul
  • Bhaskar Das
  • Mrutyunjay Suar
  • R. Jayabalan
  • Derek Fawcett
  • Gerrard Eddy Jai Poinern
  • Suraj K. Tripathy
  • Amrita MishraEmail author
Original Investigation


The aim of the present study is focused on the synthesis of Au@ZnO core–shell nanocomposites, where zinc oxide is overlaid on biogenic gold nanoparticles obtained from Hibiscus Sabdariffa plant extract. Optical property of nanocomposites is investigated using UV–visible spectroscopy and crystal structure has been determined using X-ray crystallography (XRD) technique. The presence of functional groups on the surface of Au@ZnO core–shell nanocomposites has been observed by Fourier transforms infrared (FTIR) spectroscopy. Electron microscopy studies revealed the morphology of the above core–shell nanocomposites. The synthesized nanocomposite material has shown antimicrobial and anti-biofilm activity against Staphylococcus aureus and Methicillin Resistant Staphylococcus haemolyticus (MRSH). The microbes are notorious cross contaminant and are known to cause infection in open wounds. The possible antimicrobial mechanism of as synthesized nanomaterials has been investigated against Staphylococcus aureus and obtained data suggests that the antimicrobial activity could be due to release of reactive oxygen species (ROS). Present study has revealed that surface varnishing of biosynthesized gold nanoparticles through zinc oxide has improved its antibacterial proficiency against Staphylococcus aureus, whereas reducing its toxic effect towards mouse fibroblast cells under normal and hyperglycaemic condition. Further studies have been performed in mice model to understand the wound healing efficiency of Au@ZnO nanocomposites. The results obtained suggest the possible and effective use of as synthesized core shell nanocomposites in wound healing.


Biofilm Core–shell Gold Staphylococcus aureus Methicillin resistant Staphylococcus haemolyticus Zinc oxide 



This work is supported by Department of Biotechnology (DBT), Government of India (Grant No. BT/AB/08/01/2008-III). Md. Imran Khan is thankful to University Grant Commission, New Delhi for supporting him through UGC-MANF programme.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest related to this article.

Supplementary material

430_2018_564_MOESM1_ESM.docx (48.2 mb)
Supplementary material 1 (DOCX 49336 KB)


  1. 1.
    Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51CrossRefGoogle Scholar
  2. 2.
    Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJ (2016) Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet 387:176–187CrossRefGoogle Scholar
  3. 3.
    Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532CrossRefGoogle Scholar
  4. 4.
    Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Fisher RA, Gollan B, Helaine S (2017) Persistent bacterial infections and persister cells. Nat Rev Microbiol 15:453–464CrossRefGoogle Scholar
  6. 6.
    David MZ, Daum RS (2017) Treatment of Staphylococcus aureus infections. Springer, Berlin, pp 1–59Google Scholar
  7. 7.
    Rasmussen RV, Fowler VG Jr, Skov R, Bruun NE (2011) Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future Microbiol 6:43–56CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kanafani ZA, Kourany WM, Fowler VG, Levine DP, Vigliani GA, Campion M, Katz DE, Corey GR, Boucher HW (2009) Clinical characteristics and outcomes of diabetic patients with Staphylococcus aureus bacteremia and endocarditis. Eur J Clin Microbiol Infect Dis 28:1477CrossRefGoogle Scholar
  9. 9.
    Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2:445–459CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Zapotoczna M, O’Neill E, O’Gara JP (2016) Untangling the diverse and redundant mechanisms of Staphylococcus aureus biofilm formation. PLoS Pathog 12:e1005671CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wang J, Zhou H, Guo G, Tan J, Wang Q, Tang J, Liu W, Shen H, Li J, Zhang X (2017) Enhanced anti-infective efficacy of ZnO nanoreservoirs through a combination of intrinsic anti-biofilm activity and reinforced innate defense. ACS Appl Mater Interfaces 9:33609–33623CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Alves MM, Bouchami O, Tavares A, Córdoba L, Santos CF, Miragaia M, de Fatima Montemor M (2017) New insights into antibiofilm effect of a nanosized ZnO coating against the pathogenic methicillin resistant Staphylococcus aureus. ACS Appl Mater Interfaces 9:28157–28167CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Heng BC, Zhao X, Xiong S, Ng KW, Boey FY, Loo JS (2010) Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol 48:1762–1766CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Heim J, Felder E, Tahir MN, Kaltbeitzel A, Heinrich UR, Brochhausen C, Mailänder V, Tremel W, Brieger J (2015) Genotoxic effects of zinc oxide nanoparticles. Nanoscale 7:8931–8938CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Das B, Khan MI, Jayabalan R, Behera SK, Yun SI, Tripathy SK, Mishra A (2016) Understanding the antifungal mechanism of Ag@ZnO core-shell nanocomposites against Candida krusei. Sci Rep 6:36403CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Peng CH, Chyau CC, Chan KC, Chan TH, Wang CJ, Huang CN (2011) Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance. J Agric Food Chem 59:9901–9909CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mishra P, Ray S, Sinha S, Das B, Khan MI, Behera SK, Yun SI, Tripathy SK, Mishra A (2016) Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochem Eng J 105:264–272CrossRefGoogle Scholar
  18. 18.
    O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp 47:2437Google Scholar
  19. 19.
    Wojtala A, Bonora M, Malinska D, Pinton P, Duszynski J, Wieckowski MR (2014) Methods to monitor ROS production by fluorescence microscopy and fluorometry. Meth Enzymol 542:243–262CrossRefGoogle Scholar
  20. 20.
    Adams DN (2005) Shortcut method for extraction of Staphylococcus aureus DNA from blood cultures and conventional cultures for use in real-time PCR assays. J Clin Microbiol 43:2932–2933CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Arakha M, Saleem M, Mallick BC, Jha S (2015) The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 5:9578CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gerlier D, Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94:57–63CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wang J, Wei Y, Zhao S, Zhou Y, He W, Zhang Y, Deng W (2017) The analysis of viability for mammalian cells treated at different temperatures and its application in cell shipment. PLoS One 12:0176120Google Scholar
  24. 24.
    Santhoshkumar J, Rajeshkumar S, Kumar SV (2017) Phyto-assisted synthesis, characterization and applications of gold nanoparticles—a review. Biochem Biophys Rep 11:46–57PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sett A, Gadewar M, Sharma P, Deka M, Bora U (2016) Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica. Adv Nat Sci: Nanosci Nanotechnol 7:025005Google Scholar
  26. 26.
    Gholap H, Warule S, Sangshetti J, Kulkarni G, Banpurkar A, Satpute S, Patil R (2016) Hierarchical nanostructures of Au@ZnO: antibacterial and antibiofilm agent. Appl Microbiol Biotechnol 100:5849–5858CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fan X, Zheng W, Singh DJ (2014) Light scattering and surface plasmons on small spherical particles. Light Sci Appl 3:e179CrossRefGoogle Scholar
  28. 28.
    Guler U, Turan R (2010) Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles. Opt Express 18:17322–17338CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098CrossRefGoogle Scholar
  30. 30.
    Lippincott ER (1963) Infrared spectra of inorganic and coordination compounds. J Am Chem Soc 85:3532–3532CrossRefGoogle Scholar
  31. 31.
    Qin Y, Zhou Y, Li J, Ma J, Shi D, Chen J, Yang J (2014) Fabrication of hierarchical core–shell Au@ZnO heteroarchitectures initiated by heteroseed assembly for photocatalytic applications. J Colloid Interface Sci 418:171–177CrossRefGoogle Scholar
  32. 32.
    Raghavendra P, Reddy GV, Sivasubramanian R, Chandana PS, Sarma LS (2017) Reduced graphene oxide-supported Pd@Au bimetallic nano electrocatalyst for enhanced oxygen reduction reaction in alkaline media. Int J Hydrogen Energy. CrossRefGoogle Scholar
  33. 33.
    Lohse SE, Abadeer NS, Zoloty M, White JC, Newman LA, Murphy CJ (2017) Nanomaterial Probes in the Environment: Gold Nanoparticle Soil Retention and Environmental Stability as a Function of Surface Chemistry. ACS Sustain Chem Eng 5:11451–11458CrossRefGoogle Scholar
  34. 34.
    Daima HK, Selvakannan PR, Shukla R, Bhargava SK, Bansal V (2013) Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS One 8:e79676CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58CrossRefGoogle Scholar
  36. 36.
    Almeida GC, dos Santos MM, Lima NG, Cidral TA, Melo MC, Lima KC (2014) Prevalence and factors associated with wound colonization by Staphylococcus spp. and Staphylococcus aureus in hospitalized patients in inland northeastern Brazil: a cross-sectional study. BMC Infect Dis 14:328CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ortines RV, Cheng L, Cohen TS, Gami A, Dillen CA, Ashbaugh AG, Miller RJ, Wang Y, Tkaczyk C, Sellman BR, Miller LS (2017) Anti-alpha-toxin immunoprohylaxis reduces disease severity against a Staphylococcus aureus full-thickness skin wound infection in immunocompetent and diabetic mice. J Immunol 198:77-20Google Scholar
  38. 38.
    Zhao G, Usui ML, Lippman SI, James GA, Stewart PS, Fleckman P, Olerud JE (2013) Biofilms and inflammation in chronic wounds. Adv Wound Care 2:389–399CrossRefGoogle Scholar
  39. 39.
    Todar K (2013) Structure and function of bacterial cells.
  40. 40.
    Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 6:25CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767Google Scholar
  42. 42.
    Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q (2015) Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 15:36CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Stocks SM (2004) Mechanism and use of the commercially available viability stain. BacLight Cytom A 61:189–195CrossRefGoogle Scholar
  44. 44.
    Carter WO, Narayanan PK, Robinson JP (1994) Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol 55:253–258CrossRefGoogle Scholar
  45. 45.
    Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333CrossRefGoogle Scholar
  46. 46.
    Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284CrossRefGoogle Scholar
  47. 47.
    Becerra MC, Páez PL, Laróvere LE, Albesa I (2006) Lipids and DNA oxidation in Staphylococcus aureus as a consequence of oxidative stress generated by ciprofloxacin. Mol Cell Biochem 285:29–34CrossRefGoogle Scholar
  48. 48.
    Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881CrossRefGoogle Scholar
  49. 49.
    Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J 279:1327–1338CrossRefGoogle Scholar
  50. 50.
    Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Kadirvelu K, Balagurunathan R (2017) In vitro antimicrobial and in vivo wound healing effect of actinobacterially synthesised nanoparticles of silver, gold and their alloy. RSC Adv 7:51729–51743CrossRefGoogle Scholar
  51. 51.
    Wahab R, Mishra A, Yun SI, Kim YS, Shin HS (2010) Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotechnol 87:1917–1925CrossRefPubMedCentralGoogle Scholar
  52. 52.
    De Stefano D, Carnuccio R, Maiuri MC (2012) Nanomaterials toxicity and cell death modalities. J Drug DelGoogle Scholar
  53. 53.
    Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2015) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654CrossRefGoogle Scholar
  54. 54.
    Hayes A, Bakand S, Joeng L, Winder C (2008) In vitro cytotoxicity assessment of selected nanoparticles using human skin fibroblasts. AATEX J 14:397–400Google Scholar
  55. 55.
    Powell HM, Armour AD, Boyce ST (2011) Fluorescein diacetate for determination of cell viability in 3D fibroblast-collagen-GAG constructs. In: Mammalian cell viability, Humana Press, 115–126Google Scholar
  56. 56.
    Wang D, Li H, Liu Z, Zhou J, Zhang T (2017) Acute toxicological effects of zinc oxide nanoparticles in mice after intratracheal instillation. Int J Occup Environ Med 1–9. CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bunnell TM, Burbach BJ, Shimizu Y, Ervasti JM (2011) β-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell 22:4047–4058CrossRefPubMedCentralGoogle Scholar
  59. 59.
    GY M (2002) Proliferative and nutritional dependent regulation of glyceraldehyde-3-phosphate dehydrogenase expression in the rat liver. Cell Prolif 35:173–182CrossRefGoogle Scholar
  60. 60.
    Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Matsubayashi Y, Ebisuya M, Honjoh S, Nishida E (2004) ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing. Curr Biol 14:731–735CrossRefGoogle Scholar
  62. 62.
    Chen WL, Lin CT, Li JW, Hu FR, Chen CC (2009) ERK1/2 activation regulates the wound healing process of rabbit corneal endothelial cells. Curr Eye Res 34:103–111CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ranzato E, Patrone M, Pedrazzi M, Burlando B (2010) Hmgb1 promotes wound healing of 3T3 mouse fibroblasts via RAGE-dependent ERK1/2 activation. Cell Biochem Biophys 57:9–17CrossRefPubMedCentralGoogle Scholar
  64. 64.
    Makino T, Jinnin M, Muchemwa FC, Fukushima S, Kogushi-Nishi H, Moriya C, Igata T, Fujisawa A, Johno T, Ihn H (2010) Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways. Br J Dermatol 162:717–723CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Herzog EL, Bucala R (2010) Fibrocytes in health and disease. Exp Hematol 38:548–556CrossRefPubMedCentralGoogle Scholar
  66. 66.
    McGee HM, Schmidt BA, Booth CJ, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA, Horsley V (2013) IL-22 promotes fibroblast-mediated wound repair in the skin. J Investig Dermatol 133:1321–1329CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Avitabile S, Odorisio T, Madonna S, Eyerich S, Guerra L, Eyerich K, Zambruno G, Cavani A, Cianfarani F (2015) Interleukin-22 promotes wound repair in diabetes by improving keratinocyte pro-healing functions. J Investig Dermatol 135:2862–2870CrossRefPubMedCentralGoogle Scholar
  68. 68.
    Sehgal PB (1990) Interleukin-6: molecular pathophysiology. J. Investig. Dermatol. 94Google Scholar
  69. 69.
    Paquet P, Piérard GE (1996) lnterleukin-6 and the Skin. Int Arch Allergy Immunol 109:308–317CrossRefPubMedCentralGoogle Scholar
  70. 70.
    Goodman L, Stein GH (1994) Basal and induced amounts of interleukin-6 mRNA decline progressively with age in human fibroblasts. J Biol Chem 269:19250–19255PubMedGoogle Scholar
  71. 71.
    Fahey TJ, Sadaty A, Jones WG, Barber A, Smoller B, Shires GT (1991) Diabetes impairs the late inflammatory response to wound healing. J Surg Res 50:308–313CrossRefPubMedCentralGoogle Scholar
  72. 72.
    Morain WD, Colen LB (1990) Wound healing in diabetes mellitus. Clin Plast Surg 17:493–501PubMedPubMedCentralGoogle Scholar
  73. 73.
    Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9(Suppl 1):51PubMedPubMedCentralGoogle Scholar
  74. 74.
    Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6:265sr6–265sr6CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hutchison JE (2016) The road to sustainable nanotechnology: Challenges, progress and opportunities. ACS Sustain Chem Eng 4:5907–5914CrossRefGoogle Scholar
  76. 76.
    Naraginti S, Kumari PL, Das RK, Sivakumar A, Patil SH, Andhalkar VV (2016) Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater Sci Eng C 62:293–300CrossRefGoogle Scholar
  77. 77.
    Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, Rotello VM (2014) Gold nanoparticles for nucleic acid delivery. Mol. Ther. 22-1075-1083Google Scholar
  78. 78.
    Huang Y, Yu F, Park YS, Wang J, Shin MC, Chung HS, Yang VC (2010) Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 31:9086–9091CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Md. Imran Khan
    • 1
  • Susanta Kumar Behera
    • 2
  • Prajita Paul
    • 1
  • Bhaskar Das
    • 3
  • Mrutyunjay Suar
    • 1
  • R. Jayabalan
    • 3
  • Derek Fawcett
    • 4
  • Gerrard Eddy Jai Poinern
    • 4
  • Suraj K. Tripathy
    • 1
    • 5
  • Amrita Mishra
    • 1
    Email author
  1. 1.School of BiotechnologyKalinga Institute of Industrial Technology (KIIT)BhubaneswarIndia
  2. 2.IMGENEX India Pvt. Ltd.BhubaneswarIndia
  3. 3.Department of Life SciencesNational Institute of TechnologyRourkelaIndia
  4. 4.Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and EnergyMurdoch UniversityMurdochAustralia
  5. 5.School of Chemical TechnologyKalinga Institute of Industrial Technology (KIIT)BhubaneswarIndia

Personalised recommendations