Advertisement

Medical Microbiology and Immunology

, Volume 208, Issue 1, pp 69–80 | Cite as

Role of pentamer complex-specific and IgG subclass 3 antibodies in HCMV hyperimmunoglobulin and standard intravenous IgG preparations

  • Matthias Stefan Schampera
  • Jose Arellano-Galindo
  • Karl Oliver Kagan
  • Stuart P. Adler
  • Gerhard Jahn
  • Klaus HamprechtEmail author
Original Investigation
  • 158 Downloads

Abstract

Background

HCMV hyperimmunoglobulin-preparations (HIG) contain high concentrations of HCMV-specific IgG. The reduced maternofetal-HCMV-transmission rate of IgG may be due to HCMV-specific neutralizing antibodies against the HCMV pentameric complex (PC). In contrast to HIG, standard intravenous immunoglobulin (IVIG) may have more neutralization (NT) capacity than HIG due to higher IgG subclass 3 levels (Planitzer et al., 2011).

Methods

We investigated the HCMV-specific NT-capacity of HIG Cytotect®, using a recombinant pentameric complex (gHgLUL128-131A) for specific antibody-depletion. We used a modified UL130-peptide (TANQNPSPPWSKLTYSKPH) based on original-sequence of Saccoccio et al. (Vaccine 29(15):2705–2711, 2011) (SWSTLTANQNPSPPWSKLTY) as neutralization target. Both UL130-peptides and the PC were bound via sixfold HisTag and anti-HisTag mAbs to magnetic beads to deplete HCMV-specific IgGs from HIG (Cytotect®). Modifying this depletion strategy, we analyzed the role of IgG subclass 3 in both HIG and IVIG.

Results

After CMV IgG-normalization of HIG and IVIG, we found a significant trend towards a decrease (16%) of neutralization-capacity for the UL130 TAN-peptide, but not for the original UL130 SWS-peptide. However, highly significant loss of NT-capacity could be only observed by PC depletion (42%). The IgG subclass 3 depletion revealed no significant reduction of NT-capacity in both HIG and IVIG.

Conclusion

Via specific antibody depletion, we could demonstrate that pentameric complex-specific antibodies are present in HIG and bind to the recombinant PC resulting in a highly significant reduction of NT-capacity compared to the UL130 TAN-and SWS-peptides. We could not confirm the functional role of IgG subclass 3 neutralizing antibodies in IgG-preparations.

Keywords

Cytomegalovirus CMV Hyperimmunoglobulin HIG Pentameric complex gHgLUL128-131 Neutralizing antibodies IgG subclass 3 

Notes

Acknowledgements

MS received a Grant from Biotest AG, Preclinical Research (Dr. M Germer). Cytotect® was provided from Biotest AG. We thank Wioleta Kapis for her excellent technical assistance and for providing sera from the Tuebingen congenital CMV study.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Maternal sera at birth were derived from the Tuebingen congenital CMV study, approved by our local Ethics Committee at the University Hospital of Tuebingen; EK number 506/2015BO2. Each mother enrolled in the cCMV study was informed about the study design and has given signed permission using her serum for CMV serology.

Supplementary material

430_2018_558_MOESM1_ESM.pptx (434 kb)
Supplemental Material Figure 1: Prediction of the epitopes through bioinformatics analysis by the use of two computer servers (A and B). The epitope was selected from position 33 to 51 with optimal physical chemical properties (C). Supplemental Material Figure 2: Structural similarities were observed, comparing our predicted 3D model and a previously reported crystalized model [36] (PPTX 434 KB)

References

  1. 1.
    Picone O, Vauloup-Fellous C, Cordier AG, Guitton S, Senat MV, Fuchs F, Ayoubi JM, Grangeot Keros L, Benachi A (2013) A series of 238 cytomegalovirus primary infections during pregnancy: description and outcome. Prenat Diagn 33(8):751–758CrossRefGoogle Scholar
  2. 2.
    Pass RF (2009) Development and evidence for efficacy of HCMV glycoprotein B vaccine with MF59 adjuvant J. Clin Virol 46:73–76CrossRefGoogle Scholar
  3. 3.
    Connolly SA, Jackson JO, Jardetzky TS, Longnecker R (2011) Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol 9:369–381CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C et al (2012) Herpes virus fusion and entry: a story with many characters. Viruses 4:800–832CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ciferri C, Chandramouli S, Donnarumma D, Nikitin PA, Cianfrocco MA, Gerrein R, Feire AL, Barnett SW1, Lilja AE, Rappuoli R, Norais N, Settembre EC, Carfi A (2015) Structural and biochemical studies of HCMV gH/gL/gO and Pentamer reveal mutually exclusive cell entry complexes. Proc Natl Acad Sci USA 112(6):1767–1772CrossRefGoogle Scholar
  6. 6.
    Stegmann C, Abdellatif ME, Laib Sampaio K, Walther P, Sinzger C (2016) Importance of highly conserved peptide sites of human cytomegalovirus gO for formation of the gH/gL/gO complex. J Virol. 91(1):e01339-16CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lemmermann NA, Krmpotic A, Podlech J, Brizic I, Prager A, Adler H, Karbach A, Wu Y, Jonjic S, Reddehase MJ, Adler B (2015) Non-redundant and redundant roles of cytomegalovirus gH/gL complexes in host organ entry and intra-tissue spread. PLoS Pathog 11(2):e1004640CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Vanarsdall AL, Chase MC, Johnson DC (2011) Human cytomegalovirus glycoprotein gO complexes with gH/gL, promoting interference with viral entry into human fibroblasts but not entry into epithelial cells. J Virol 85:11638–11645CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Adler B, Scrivano L, Ruzcics Z, Rupp B, Sinzger C, Koszinowski U (2006) Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J Gen Virol 87(Pt 9):2451–2460CrossRefGoogle Scholar
  10. 10.
    Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G, Sarasini A, Wagner M, Gallina A, Milanesi G, Koszinowski U, Baldanti F, Gerna G (2004) Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol 78(18):10023–10033CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gerna G, Percivalle E, Lilleri D, Lozza L, Fornara C et al (2005) Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131–128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J Gen Virol 86:275–284. PMIDCrossRefGoogle Scholar
  12. 12.
    Wang D, Shenk T (2005) Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci USA 102(50):18153–18158CrossRefGoogle Scholar
  13. 13.
    Sinzger C, Eberhardt K, Cavignac Y, Weinstock C, Kessler T et al (2006) Macrophage cultures are susceptible to lytic productive infection by endothelial-cell-propagated human cytomegalovirus strains and present viral IE1 protein to CD4 + T cells despite late downregulation of MHC class II molecules. J Gen Virol 87:1853–1862CrossRefGoogle Scholar
  14. 14.
    Fouts AE, Chan P, Stephan JP, Vandlen R, Feierbach B (2012) Antibodies against the gH/gL/UL128/UL130/UL131 complex comprise the majority of the anti-cytomegalovirus (anti-CMV) neutralizing antibody response in CMV hyperimmune globulin. J Virol 86(13):7444–7447CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ryckman BJ, Rainish BL, Chase MC, Borton JA, Nelson JA, Jarvis MA, Johnson DC (2008) Characterization of the human cytomegalovirus gH/gL/UL128-131 complex that mediates entry into epithelial and endothelial cells. J Virol 82(1):60–70CrossRefGoogle Scholar
  16. 16.
    Ha S, Li F, Troutman MC, Freed DC, Tang A, Loughney JW, Wang D, Wang IM, Vlasak J, Nickle DC, Rustandi RR, Hamm M, DePhillips PA, Zhang N, McLellan JS, Zhu H, Adler SP, McVoy MA, An Z, Fu TM (2017) Neutralization of diverse human cytomegalovirus strains conferred by antibodies targeting viral gH/gL/pUL128-131 pentameric complex. J Virol 91(7):e02033-16.  https://doi.org/10.1128/JVI.02033-16 CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Zydek M, Petitt M, Fang-Hoover J, Adler B, Kauvar LM, Pereira L, Tabata T (2014) HCMV infection of human trophoblast progenitor cells of the placenta is neutralized by a human monoclonal antibody to glycoprotein B and not by antibodies to the pentamer complex. Viruses 6(3):1346–1364CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lilleri D, Kabanova A, Revello MG, Percivalle E, Sarasini A et al (2013) Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection. PLoS One 8:e59863CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Nigro G, Adler SP, La TR, Best AM (2005) Passive immunization during pregnancy for congenital cytomegalovirus infection. Engl J Med 353:1350–1362CrossRefGoogle Scholar
  20. 20.
    Visentin S, Manara R, Milanese L, Da Roit A, Forner G, Salviato E, Citton V, Magno FM, Orzan E, Morando C, Cusinato R, Mengoli C, Palu G, Ermani M, Rinaldi R, Cosmi E, Gussetti N (2012) Early primary cytomegalovirus infection in pregnancy: maternal hyperimmunoglobulin therapy improves outcomes among infants at 1 year of age. Clin Infect Dis 55(4):497–503CrossRefGoogle Scholar
  21. 21.
    Buxmann H, Stackelberg OM, Schlößer RL, Enders G, Gonser M, Meyer-Wittkopf M, Hamprecht K, Enders M (2012) Use of cytomegalovirus hyperimmunoglobulin for prevention of congenital cytomegalovirus disease: a retrospective analysis. J Perinat Med 40(4):439–446Google Scholar
  22. 22.
    Revello MG, Lazzarotto T, Guerra B, Spinillo A, Ferrazzi E, Kustermann A, Guaschino S, Vergani P, Todros T, Frusca T, Arossa A, Furione M, Rognoni V, Rizzo N, Gabrielli L, Klersy C, Gerna G, CHIP Study Group (2014) A randomized trial of hyperimmune globulin to prevent congenital. N Engl J Med 370(14):1316–1326CrossRefGoogle Scholar
  23. 23.
    Rawlinson WD, Boppana SB, Fowler KB, Kimberlin DW, Lazzarotto T, Alain S, Daly K, Doutré S, Gibson L, Giles ML, Greenlee J, Hamilton ST, Harrison GJ, Hui L, Jones CA, Palasanthiran P, Schleiss MR, Shand MW, van Zuylen WJ (2017) Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect Dis 17(6):e177–e188CrossRefGoogle Scholar
  24. 24.
    Kagan KO, Enders M, Schampera MS, Baeumel E, Hoopmann M, Geipel A, Berg C, Goelz R, De Catte L, Wallwiener D, Brucker S, Adler SP, Jahn G, Hamprecht K (2018) Prevention of maternal-fetal transmission of CMV by hyperimmunoglobulin (HIG) administered after a primary maternal CMV infection in early gestation. Ultrasound Obstet Gynecol.  https://doi.org/10.1002/uog.19164 Google Scholar
  25. 25.
    Schampera MS, Schweinzer K, Abele H, Kagan KO, Klein R, Rettig I, Jahn G, Hamprecht K (2017) Comparison of cytomegalovirus (CMV)-specific neutralization capacity of hyperimmunoglobulin (HIG) versus standard intravenous immunoglobulin (IVIG) preparations: impact of CMV IgG normalization. J Clin Virol 90:40–45CrossRefGoogle Scholar
  26. 26.
    Planitzer CB, Saemann MD, Gajek H, Farcet MR, Kreil TR (2011) Cytomegalovirus neutralization by hyperimmune and standard intravenous immunoglobulin preparations. Transplantation 92(3):267–270.  https://doi.org/10.1097/TP.0b013e318224115e CrossRefGoogle Scholar
  27. 27.
    Gupta CK, Leszczynski J, Gupta RK et al (1996) IgG subclass antibodies to human cytomegalovirus (CMV) in normal human plasma samples and immune globulins and their neutralizing activities. Biologicals 24:117CrossRefGoogle Scholar
  28. 28.
    Saccoccio FM, Sauer AL, Cui X, Armstrong AE, Habib el-SE, Johnson DC, Ryckman BJ, Klingelhutz AJ, Adler SP, McVoy MA (2011) Peptides from cytomegalovirus UL130 and UL131 proteins induce high titer antibodies that block viral entry into mucosal epithelial cells. Vaccine 29(15):2705–2711CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Yang X, Yu X (2009) An introduction to epitope prediction methods and software. Rev Med Virol 19(2):77–96CrossRefGoogle Scholar
  30. 30.
    Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):w24–w29CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Yao B, Zhang L, Liang S, Zhang C (2012) SVMTriP: A method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One 7(9):e45152CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Saha S, Raghava GPS (2004) BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties, vol 3239. ICARIS, LNCS, Springer, New York, pp 197–204Google Scholar
  33. 33.
    Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9(1):40CrossRefGoogle Scholar
  34. 34.
    Germer M, Herbener P, Schüttrumpf J (2016) Functional properties of human cytomegalovirus hyperimmunoglobulin and standard immunoglobulin preparations. Ann Transpl 21:558–564CrossRefGoogle Scholar
  35. 35.
    Wang X, Xu Y, Scott DE, Murata H, Struble EB (2017) Binding and neutralizing anti-cytomegalovirus activities in immune globulin products. Biologicals 50:35–41CrossRefGoogle Scholar
  36. 36.
    Chandramouli S, Malito E, Nguyen T, Luisi K, Donnarumma D, Xing Y, Norais N, Yu D, Carfi A (2017) Structural basis for potent antibody-mediated neutralization of human cytomegalovirus. Sci Immunol 2(12):eaan1457CrossRefGoogle Scholar
  37. 37.
    Cui X, Meza BP, Adler SP, McVoy MA (2008) Cytomegalovirus vaccines fail to induce epithelial entry neutralizing antibodies comparable to natural infection. Vaccine 26:5760–5766CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Loughney JW, Rustandi RR, Wang D, Troutman MC, Dick LW Jr, Li G, Liu Z, Li F, Freed DC, Price CE, Hoang VM, Culp TD, DePhillips PA, Fu TM, Ha S (2015) Soluble human cytomegalovirus gH/gL/pUL128-131 pentameric complex, but not gH/gL, inhibits viral entry to epithelial cells and presents dominant native neutralizing epitopes. J Biol Chem 290(26):15985–15995CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Macagno A, Bernasconi NL, Vanzetta F, Dander E, Sarasini A, Revello MG, Gerna G, Sallusto F, Lanzavecchia A (2010) Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex. J Virol 84(2):1005–1013CrossRefGoogle Scholar
  40. 40.
    Gerna G, Percivalle E, Perez L, Lanzavecchia A, Lilleri D (2016) Monoclonal antibodies to different components of the human cytomegalovirus (HCMV) pentamer gH/gL/pUL128L and trimer gH/gL/gO as well as antibodies elicited during primary HCMV Infection prevent epithelial cell syncytium formation. J Virol 90(14):6216–6223CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ha S, Li F, Troutman MC, Freed DC, Tang A, Loughney JW, Wang D, Wang I-Ming, Vlasak J, Nickle DC, Rustandi RR, Hamm M, DePhillips PA, Zhang N, McLellan JS, Zhu H, Adler SP, McVoy MA, Zhiqiang AN, Tong-Ming FU (2017) Neutralization of diverse human cytomegalovirus strains conferred by antibodies targeting viral gH/gL/pUL128-131 pentameric complex. J Virol 91(7):JVI-02033CrossRefGoogle Scholar
  42. 42.
    Hofmann I, Wen Y, Ciferri C, Schulze A, Fühner V, Leong M, Gerber A, Gerrein R, Nandi A, Lilja AE, Carfi A, Laux H (2015) Expression of the human cytomegalovirus pentamer complex for vaccine use in a CHO system. Biotechnol Bioeng 112(12):2505–2515CrossRefGoogle Scholar
  43. 43.
    Hamilton ST, van Zuylen W, Shand A, Scott GM, Naing Z, Hall B, Craig ME, Rawlinson WD (2014) Prevention of congenital cytomegalovirus complications by maternal and neonatal treatments: a systematic review. Rev Med Virol. (6):420–433Google Scholar
  44. 44.
    Hamprecht K, Kagan KO, Goelz R (2014) Comment on: a randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N Engl J Med 370(26):2543CrossRefGoogle Scholar
  45. 45.
    Gerna G, Revello MG, Baldanti F, Percivalle E, Lilleri D (2017) The pentameric complex of human Cytomegalovirus: cell tropism, virus dissemination, immune response and vaccine development. J Gen Virol 98(9):2215–2234CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Medical VirologyUniversity Hospital of TuebingenTübingenGermany
  2. 2.Department of Obstetrics and GynaecologyUniversity Hospital of TuebingenTübingenGermany
  3. 3.Infectious Diseases Laboratory (Virology)Children’s Hospital Federico GómezMéxico CityMexico
  4. 4.CMV Research FoundationRichmondUSA

Personalised recommendations