Advertisement

Medical Microbiology and Immunology

, Volume 208, Issue 1, pp 49–58 | Cite as

Polymorphisms in the TGFB1 signal peptide influence human papillomavirus infection and development of cervical lesions

  • Kleber Paiva Trugilo
  • Guilherme Cesar Martelossi Cebinelli
  • Fernanda Costa Brandão Berti
  • Nádia Calvo Martins Okuyama
  • Fernando Cezar-dos-Santos
  • Michelle Mota Sena
  • Luis Fernando Lásaro Mangieri
  • Maria Angelica Ehara Watanabe
  • Karen Brajão de OliveiraEmail author
Original Investigation
  • 105 Downloads

Abstract

The main purpose was to assess the effect of c.29C>T and c.74G>C polymorphisms in the TGFB1 signal peptide on HPV infection and development of cervical lesions. Cervical swabs and blood samples were obtained from 349 outpatient women, along with socio-demographic and sexual behavioral data. The study population was stratified by absence or presence of HPV DNA, as tested by PCR, as well as by lesion grade. TGFB1 signal peptide polymorphisms were genotyped using PCR-restriction fragment length polymorphism. HPV DNA was detected in 172 (49.3%) patients. c.74GC and the combined c.29CC+CT/c.74GC genotype were more frequent in infected patients (35.1 and 15.7%) than in uninfected women (6.2 and 14.7%). Accordingly, these genotypes were associated with a higher risk of HPV infection, with odds ratio and 95% confidence interval of 2.81 and 1.35–5.86 (P = 0.004) for c.74GC and 3.14 and 1.42–6.94 (P = 0.004) for the combined genotype, respectively. High-grade lesions were also 2.48 times more likely to occur in c.29CC patients than in c.29TT patients, with a 95% confidence interval of 1.01–6.08 (P = 0.047). The data demonstrate that c.74G>C and c.29C>T polymorphisms are significantly associated with risk of HPV infection and high-grade squamous intraepithelial lesions, respectively. Thus, TGFB1 signal peptide polymorphisms are potential susceptibility markers.

Keywords

TGFB1 combined genotype Susceptibility markers rs1800470 rs1800471 

Notes

Acknowledgements

The authors thank the volunteers who participated in the study, the Intermunicipal Consortium of Health of the Middle Paranapanema, the University Hospital and Clinic Center of State University of Londrina, the Municipal Health Department of Londrina, Londrina—PR, Brazil, and Londrina State University Coordination for Postgraduation.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (470137/2013-4), Fundação Araucária—Programa Pesquisa para o SUS (34935.406.36850.19112012). This work received fellowship support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and financial support for language editing from FAEPE/UEL-PUBLIC 2016.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19CrossRefGoogle Scholar
  2. 2.
    Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, Clifford GM (2007) Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer 121:621–632CrossRefGoogle Scholar
  3. 3.
    Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S (2007) Human papillomavirus and cervical cancer. Lancet 370:890–907CrossRefGoogle Scholar
  4. 4.
    Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, Lowy DR, Schiller JT (2007) Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13:857–861CrossRefGoogle Scholar
  5. 5.
    zur Hausen H (2000) Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst 92:690–698CrossRefGoogle Scholar
  6. 6.
    Castellsagué X, Muñoz N (2003) Chap. 3: Cofactors in human papillomavirus carcinogenesis—role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr 20–28Google Scholar
  7. 7.
    Patel S, Chiplunkar S (2009) Host immune responses to cervical cancer. Curr Opin Obstet Gynecol 21:54–59CrossRefGoogle Scholar
  8. 8.
    Alcocer-González JM, Berumen J, Taméz-Guerra R, Bermúdez-Morales V, Peralta-Zaragoza O, Hernández-Pando R, Moreno J, Gariglio P, Madrid-Marina V (2006) In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol 19:481–491CrossRefGoogle Scholar
  9. 9.
    Guan X, Sturgis EM, Lei D, Liu Z, Dahlstrom KR, Wei Q, Li G (2010) Association of TGF-beta1 genetic variants with HPV16-positive oropharyngeal cancer. Clin Cancer Res 16:1416–1422CrossRefGoogle Scholar
  10. 10.
    Lebrun J-J (2012) The dual role of TGFβ in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol 381428Google Scholar
  11. 11.
    Zarzynska JM (2014) Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 141747Google Scholar
  12. 12.
    Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC (2003) A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 63:2610–2615Google Scholar
  13. 13.
    Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Specter TD (1999) Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 8:93–97CrossRefGoogle Scholar
  14. 14.
    Healy J, Dionne J, Bélanger H, Lariviere M, Beaulieu P, Labuda D, Sinnett D (2009) Functional impact of sequence variation in the promoter region of TGFB1. Int J Cancer 125:1483–1489CrossRefGoogle Scholar
  15. 15.
    Shah R, Rahaman B, Hurley CK, Posch PE (2006) Allelic diversity in the TGFB1 regulatory region: characterization of novel functional single nucleotide polymorphisms. Hum Genet 119:61–74CrossRefGoogle Scholar
  16. 16.
    Wood NA, Thomson SC, Smith RM, Bidwell JL (2000) Identification of human TGF-beta1 signal (leader) sequence polymorphisms by PCR-RFLP. J Immunol Methods 234:117–122CrossRefGoogle Scholar
  17. 17.
    Martelossi Cebinelli GC, Paiva Trugilo K, Badaró Garcia S, Brajão de Oliveira K (2016) TGF-1 functional polymorphisms: a review. Eur Cytokine Netw 27:81–89Google Scholar
  18. 18.
    Pooja S, Francis A, Rajender S, Tamang R, Rajkumar R, Saini KS, Megu K, Goel MM, Surekha D, Rao DR, Rao L, Ramachandra L, Kumar S, Kumar S, Vishnupriya S, Satyamoorthy K, Negi MP, Thangaraj K, Konwar R (2013) Strong impact of TGF-β1 gene polymorphisms on breast cancer risk in Indian women: a case-control and population-based study. PLoS One 8:e75979CrossRefGoogle Scholar
  19. 19.
    Shin A, Shu XO, Cai Q, Gao YT, Zheng W (2005) Genetic polymorphisms of the transforming growth factor-beta1 gene and breast cancer risk: a possible dual role at different cancer stages. Cancer Epidemiol Biomarkers Prev 14:1567–1570CrossRefGoogle Scholar
  20. 20.
    Ziv E, Cauley J, Morin PA, Saiz R, Browner WS (2001) Association between the T29> C polymorphism in the transforming growth factor beta1 gene and breast cancer among elderly white women: the study of osteoporotic fractures. JAMA 285:2859–2863CrossRefGoogle Scholar
  21. 21.
    Carneiro NK, Oda JMM, Losi-Guembarovski R, Ramos G, Oliveira BV, Cavalli IJ, de SF Ribeiro, Gonçalves EM, Watanabe MS MAE (2013) Possible association between TGF-β1 polymorphism and oral cancer. Int J Immunogenet 40:292–298CrossRefGoogle Scholar
  22. 22.
    Fan H, Yu H, Deng H, Chen X (2014) Transforming growth factor-β1 rs1800470 polymorphism is associated with lung cancer risk: a meta-analysis. Med Sci Monit 20:2358–2362CrossRefGoogle Scholar
  23. 23.
    Lima SF, Tavares MMF, Macedo JL, Oliveira RS, Heráclio SA, Maia MMD, Souza PRE, Moura R, Crovella S (2016) Influence of IL-6, IL-8, and TGF-β1 gene polymorphisms on the risk of human papillomavirus-infection in women from Pernambuco, Brazil. Mem Inst Oswaldo Cruz 111:663–669CrossRefGoogle Scholar
  24. 24.
    Marangon AV, Guelsin GAS, Visentainer JEL, Borelli SD, Watanabe MAE, Consolaro MEL, Caleffi-Ferracioli KR, Rudnick CCC, Sell AM (2013) The association of the immune response genes to human papillomavirus-related cervical disease in a Brazilian population. Biomed Res Int 146079Google Scholar
  25. 25.
    Fernandes APM, Gonçalves MAG, Simões RT, Mendes-Junior CT, Duarte G, Donadi EA (2008) A pilot case–control association study of cytokine polymorphisms in Brazilian women presenting with HPV-related cervical lesions. Eur J Obstet Gynecol Reprod Biol 140:241–244CrossRefGoogle Scholar
  26. 26.
    Wang Q, Zhang C, Walayat S, Chen HW, Wang Y (2011) Association between cytokine gene polymorphisms and cervical cancer in a Chinese population. Eur J Obstet Gynecol Reprod Biol 158:330–333CrossRefGoogle Scholar
  27. 27.
    Stanczuk GA, Tswana SA, Bergstrom S, Sibanda EM (2002) Polymorphism in codons 10 and 25 of the transforming growth factor-beta 1 (TGF-β1) gene in patients with invasive squamous cell carcinoma of the uterine cervix. Eur J Immunogenet 29:417–421CrossRefGoogle Scholar
  28. 28.
    da Silva MC, Martins HP, de Souza JL, Tognim MCB, Svidzinski TIE, Teixeira JJV, Consolaro MEL (2012) Prevalence of HPV infection and genotypes in women with normal cervical cytology in the state of Paraná, Brazil. Arch Gynecol Obstet 286:1015–1022CrossRefGoogle Scholar
  29. 29.
    Bauer HM, Ting Y, Greer CE, Chambers JC, Tashiro CJ, Chimera J, Reingold A, Manos MM (1991) Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA 265:472–477CrossRefGoogle Scholar
  30. 30.
    Coser J, da Rocha Boeira T, Wolf JM, Cerbaro K, Simon D, Lunge VR (2016) Cervical human papillomavirus infection and persistence: a clinic-based study in the countryside from South Brazil. Braz J Infect Dis 20:61–68CrossRefGoogle Scholar
  31. 31.
    Hwang LY, Lieberman JA, Ma Y, Farhat S, Moscicki AB (2012) Cervical ectopy and the acquisition of human papillomavirus in adolescents and young women. Obstet Gynecol 119:1164–1170CrossRefGoogle Scholar
  32. 32.
    Nunes JD, Vidal FC, Ferraro CT, Chein MBC, Brito LMO, Monteiro SCM (2014) Molecular detection of human papillomavirus in Brazilian women with cervical intraepithelial neoplasia in a northeast Brazilian city. Genet Mol Res 13:9077–9085CrossRefGoogle Scholar
  33. 33.
    Alam S, Conway MJ, Chen HS, Meyers C (2007) The cigarette smoke carcinogen benzo[a]pyrene enhances human papillomavirus synthesis. J Virol 82:1053–1058CrossRefGoogle Scholar
  34. 34.
    Castellsagué X, Bosch FX, Muñoz N (2002) Environmental co-factors in HPV carcinogenesis. Virus Res 89:191–199CrossRefGoogle Scholar
  35. 35.
    Melikian AA, Sun P, Prokopczyk B, El-Bayoumy K, Hoffmann D, Wang X, Waggoner S (1999) Identification of benzo[a]pyrene metabolites in cervical mucus and DNA adducts in cervical tissues in humans by gas chromatography-mass spectrometry. Cancer Lett 146:127–134CrossRefGoogle Scholar
  36. 36.
    Torres-Poveda K, Bahena-Román M, Madrid-González C, Burguete-García AI, Bermúdez-Morales VH, Peralta-Zaragoza O, Madrid-Marina V (2014) Role of IL-10 and TGF-β1 in local immunosuppression in HPV-associated cervical neoplasia. World J Clin Oncol 5:753–763CrossRefGoogle Scholar
  37. 37.
    Crawford DC, Nickerson DA (2005) Definition and clinical importance of haplotypes. Annu Rev Med 56:303–320CrossRefGoogle Scholar
  38. 38.
    Ki K-D, Tong S-Y, Huh C-Y, Lee JM, Lee SK, Chi SG (2009) Expression and mutational analysis of TGF-beta/Smads signaling in human cervical cancers. J Gynecol Oncol 20:117–121CrossRefGoogle Scholar
  39. 39.
    Peghini BC, Abdalla DR, Barcelos ACM, Teodoro LDGVL, Murta EFC, Michelin MA (2012) Local cytokine profiles of patients with cervical intraepithelial and invasive neoplasia. Hum Immunol 73:920–926CrossRefGoogle Scholar
  40. 40.
    Xu Q, Wang S, Xi L, Wu S, Chen G, Zhao Y, Wu Y, Ma D (2006) Effects of human papillomavirus type 16 E7 protein on the growth of cervical carcinoma cells and immuno-escape through the TGF-beta1 signaling pathway. Gynecol Oncol 101:132–139CrossRefGoogle Scholar
  41. 41.
    Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV (1998) Genotypic variation in the transforming growth factor-beta1 gene: association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 66:1014–1020CrossRefGoogle Scholar
  42. 42.
    Gu X, Ji X, Shi L-H, Yi CH, Zhao YP, Wang AH, Lu LG, Yu WB, Gao CF (2012) Transforming growth factor beta1 gene variation Leu10Pro affects secretion and function in hepatic cells. Dig Dis Sci 57:2901–2909CrossRefGoogle Scholar
  43. 43.
    Guo W, Dong Z, Guo Y, Chen Z, Yang Z, Kuang G, Shan B (2011) Polymorphisms of transforming growth factor-β1 associated with increased risk of gastric cardia adenocarcinoma in north China. Int J Immunogenet 38:215–224CrossRefGoogle Scholar
  44. 44.
    Taubenschuß E, Marton E, Mogg M, Frech B, Ehart L, Muin D, Schreiber M (2013) The L10P polymorphism and serum levels of transforming growth factor β1 in human breast cancer. Int J Mol Sci 14:15376–15385CrossRefGoogle Scholar
  45. 45.
    Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y (2000) Association of a T29> C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 101:2783–2787CrossRefGoogle Scholar
  46. 46.
    Woodworth CD, Notario V, DiPaolo JA (1990) Transforming growth factors beta 1 and 2 transcriptionally regulate human papillomavirus (HPV) type 16 early gene expression in HPV-immortalized human genital epithelial cells. J Virol 64:4767–4775Google Scholar
  47. 47.
    Gorelik L, Flavell RA (2002) Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2:46–53CrossRefGoogle Scholar
  48. 48.
    Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P (2010) The polarization of immune cells in the tumour environment by TGF beta. Nat Rev Immunol 10:554–567CrossRefGoogle Scholar
  49. 49.
    Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25 + regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886CrossRefGoogle Scholar
  50. 50.
    Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M (2008) Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 9:194–202CrossRefGoogle Scholar
  51. 51.
    Luo Q, Zhang S, Wei H, Pang X, Zhang H (2015) Roles of Foxp3 in the occurrence and development of cervical cancer. Int J Clin Exp Pathol 8:8717–8730Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kleber Paiva Trugilo
    • 1
  • Guilherme Cesar Martelossi Cebinelli
    • 1
  • Fernanda Costa Brandão Berti
    • 1
  • Nádia Calvo Martins Okuyama
    • 1
  • Fernando Cezar-dos-Santos
    • 1
  • Michelle Mota Sena
    • 1
  • Luis Fernando Lásaro Mangieri
    • 2
  • Maria Angelica Ehara Watanabe
    • 1
  • Karen Brajão de Oliveira
    • 1
    Email author
  1. 1.Department of Pathological Science, Biological Science CenterState University of LondrinaLondrinaBrazil
  2. 2.Department of Gynecology and Obstetrics, Health Science CenterState University of LondrinaLondrinaBrazil

Personalised recommendations