Medical Microbiology and Immunology

, Volume 207, Issue 5–6, pp 307–318 | Cite as

Cellular distribution of CD200 receptor in rats and its interaction with cytomegalovirus e127 protein

  • Mohamed A. El-Mokhtar
  • Agnieszka Bauer
  • Julia Madela
  • Sebastian VoigtEmail author
Original Investigation


CD200 is a membrane protein that interacts with CD200R on the surface of immune cells and delivers an inhibitory signal. In this study, we characterized the distribution of inhibitory CD200R in rats. In addition, we investigated if e127, a homologue of rat CD200 expressed by rat cytomegalovirus (RCMV), can suppress immune functions in vitro. RT-PCR analysis was carried out to test the expression of CD200R in different rat tissues and flow cytometry was performed to characterize CD200R at the cellular level. To test the inhibitory functions of e127, a co-culture system was utilized in which immune cells were incubated with e127-expressing cells. The strongest CD200R expression was detected in lymphoid organs such as bone marrow and spleen. Flow cytometry analyses showed that CD200R+ cells were mainly CD4 dendritic cells (DC) and CD4+ T cells in the spleen. In blood, nearly all monocytes and granulocytes expressed CD200R and in bone marrow the NKRP1low subset of natural killer cells highly expressed CD200R. In addition, both peritoneal macrophages and the NR8383 macrophage cell line carried CD200R. At the functional level, viral e127 conferred an inhibitory signal on TNFα and IL6 cytokine release from IFNγ-stimulated macrophages. However, e127 did not affect the cytotoxic activity of DC. CD200R in the rat is mainly expressed on myeloid cells but also on non-myeloid cell subsets, and RCMV e127 can deliver inhibitory signals to immune cells by engaging CD200R. The RCMV model provides a useful tool to study potential immune evasion mechanisms of the herpesviridae and opens new avenues for understanding and controlling herpesvirus infections.


Cytomegalovirus e127 protein CD200 receptor Viral CD200 homologues Viral immune evasion 



Mohamed A. El-Mokhtar was kindly supported by the GERLS (German Egyptian Research Long-Term Scholarships) program from the German Academic Exchange Service (DAAD).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The rats were kept under specific pathogen-free conditions with ad libitum diet at the animal facility of the Robert Koch Institute. All procedures performed involving animals were in accordance with the ethical standards of the Robert Koch Institute, Berlin, Germany, and were approved by the ethics committee of Berlin state authorities.


  1. 1.
    Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH, Barclay AN (2000) Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13(2):233–242CrossRefGoogle Scholar
  2. 2.
    Chen Z, Kapus A, Khatri I, Kos O, Zhu F, Gorczynski RM (2018) Cell membrane-bound CD200 signals both via an extracellular domain and following nuclear translocation of a cytoplasmic fragment. Leuk Res 69:72–80CrossRefGoogle Scholar
  3. 3.
    Mihrshahi R, Barclay AN, Brown MH (2009) Essential roles for Dok2 and RasGAP in CD200 receptor-mediated regulation of human myeloid cells. J Immunol 183(8):4879–4886CrossRefGoogle Scholar
  4. 4.
    Lyons A, McQuillan K, Deighan BF, O’Reilly JA, Downer EJ, Murphy AC, Watson M, Piazza A, O’Connell F, Griffin R, Mills KH, Lynch MA (2009) Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Behav Immun 23(7):1020–1027CrossRefGoogle Scholar
  5. 5.
    Lyons A, Griffin RJ, Costelloe CE, Clarke RM, Lynch MA (2007) IL-4 attenuates the neuroinflammation induced by amyloid-beta in vivo and in vitro. J Neurochem 101(3):771–781CrossRefGoogle Scholar
  6. 6.
    Avdic S, McSharry BP, Steain M, Poole E, Sinclair J, Abendroth A, Slobedman B (2016) Human cytomegalovirus-encoded human interleukin-10 (IL-10) homolog amplifies its immunomodulatory potential by upregulating human IL-10 in monocytes. J Virol 90(8):3819–3827CrossRefGoogle Scholar
  7. 7.
    Gonzalez-Motos V, Kropp KA, Viejo-Borbolla A (2016) Chemokine binding proteins: an immunomodulatory strategy going viral. Cytokine Growth Factor Rev 30:71–80CrossRefGoogle Scholar
  8. 8.
    Guven-Maiorov E, Tsai CJ, Nussinov R (2016) Pathogen mimicry of host protein–protein interfaces modulates immunity. Semin Cell Dev Biol 58:136–145CrossRefGoogle Scholar
  9. 9.
    Estep RD, Rawlings SD, Li H, Manoharan M, Blaine ET, O’Connor MA, Messaoudi I, Axthelm MK, Wong SW (2014) The rhesus rhadinovirus CD200 homologue affects immune responses and viral loads during in vivo infection. J Virol 88(18):10635–10654CrossRefGoogle Scholar
  10. 10.
    Griffin BD, Verweij MC, Wiertz EJ (2010) Herpesviruses and immunity: the art of evasion. Vet Microbiol 143(1):89–100CrossRefGoogle Scholar
  11. 11.
    Favier B (2016) Regulation of neutrophil functions through inhibitory receptors: an emerging paradigm in health and disease. Immunol Rev 273(1):140–155CrossRefGoogle Scholar
  12. 12.
    Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin ME, Efstathiou S, Craxton M, Macaulay HA (1995) The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209(1):29–51CrossRefGoogle Scholar
  13. 13.
    Nicholas J (1996) Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J Virol 70(9):5975–5989PubMedPubMedCentralGoogle Scholar
  14. 14.
    Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93(25):14862–14867CrossRefGoogle Scholar
  15. 15.
    Foster-Cuevas M, Wright GJ, Puklavec MJ, Brown MH, Barclay AN (2004) Human herpesvirus 8 K14 protein mimics CD200 in down-regulating macrophage activation through CD200 receptor. J Virol 78(14):7667–7676CrossRefGoogle Scholar
  16. 16.
    Shiratori I, Yamaguchi M, Suzukawa M, Yamamoto K, Lanier LL, Saito T, Arase H (2005) Down-regulation of basophil function by human CD200 and human herpesvirus-8 CD200. J Immunol 175(7):4441–4449CrossRefGoogle Scholar
  17. 17.
    Misstear K, Chanas SA, Rezaee SA, Colman R, Quinn LL, Long HM, Goodyear O, Lord JM, Hislop AD, Blackbourn DJ (2012) Suppression of antigen-specific T cell responses by the Kaposi’s sarcoma-associated herpesvirus viral OX2 protein and its cellular orthologue, CD200. J Virol 86(11):6246–6257CrossRefGoogle Scholar
  18. 18.
    Mousavinezhad-Moghaddam M, Amin AA, Rafatpanah H, Rezaee SAR (2016) A new insight into viral proteins as immunomodulatory therapeutic agents: KSHV vOX2 a homolog of human CD200 as a potent anti-inflammatory protein. Iran J Basic Med Sci 19(1):2–13PubMedPubMedCentralGoogle Scholar
  19. 19.
    Langlais CL, Jones JM, Estep RD, Wong SW (2006) Rhesus rhadinovirus R15 encodes a functional homologue of human CD200. J Virol 80(6):3098–3103CrossRefGoogle Scholar
  20. 20.
    Salata C, Curtarello M, Calistri A, Sartori E, Sette P, de Bernard M, Parolin C, Palu G (2009) vOX2 glycoprotein of human herpesvirus 8 modulates human primary macrophages activity. J Cell Physiol 219(3):698–706CrossRefGoogle Scholar
  21. 21.
    Zhang L, Stanford M, Liu J, Barrett C, Jiang L, Barclay AN, McFadden G (2009) Inhibition of macrophage activation by the myxoma virus M141 protein (vCD200). J Virol 83(18):9602–9607CrossRefGoogle Scholar
  22. 22.
    Cameron CM, Barrett JW, Liu L, Lucas AR, McFadden G (2005) Myxoma virus M141R expresses a viral CD200 (vOX-2) that is responsible for down-regulation of macrophage and T-cell activation in vivo. J Virol 79(10):6052–6067CrossRefGoogle Scholar
  23. 23.
    Jackson SE, Mason GM, Wills MR (2011) Human cytomegalovirus immunity and immune evasion. Virus Res 157(2):151–160CrossRefGoogle Scholar
  24. 24.
    Baca Jones CC, Kreklywich CN, Messaoudi I, Vomaske J, McCartney E, Orloff SL, Nelson JA, Streblow DN (2009) Rat cytomegalovirus infection depletes MHC II in bone marrow derived dendritic cells. Virology 388(1):78–90CrossRefGoogle Scholar
  25. 25.
    Voigt S, Mesci A, Ettinger J, Fine JH, Chen P, Chou W, Carlyle JR (2007) Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity 26(5):617–627CrossRefGoogle Scholar
  26. 26.
    Gruijthuijsen YK, Casarosa P, Kaptein SJ, Broers JL, Leurs R, Bruggeman CA, Smit MJ, Vink C (2002) The rat cytomegalovirus R33-encoded G protein-coupled receptor signals in a constitutive fashion. J Virol 76(3):1328–1338CrossRefGoogle Scholar
  27. 27.
    Stals FS, Zeytinoglu A, Havenith M, de Clercq E, Bruggeman CA (1993) Rat cytomegalovirus-induced pneumonitis after allogeneic bone marrow transplantation: effective treatment with (S)-1-(3-hydroxy-2-phosphonyl-methoxypropyl) cytosine. Antimicrob Agents Chemother 37(2):218–223CrossRefGoogle Scholar
  28. 28.
    Trinite B, Chauvin C, Peche H, Voisine C, Heslan M, Josien R (2005) Immature CD4 CD103+ rat dendritic cells induce rapid caspase-independent apoptosis-like cell death in various tumor and nontumor cells and phagocytose their victims. J Immunol 175(4):2408–2417CrossRefGoogle Scholar
  29. 29.
    Streblow DN, Dumortier J, Moses AV, Orloff SL, Nelson JA (2008) Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing. Curr Top Microbiol Immunol 325:397–415PubMedPubMedCentralGoogle Scholar
  30. 30.
    Voigt S, Sandford GR, Hayward GS, Burns WH (2005) The English strain of rat cytomegalovirus (CMV) contains a novel captured CD200 (vOX2) gene and a spliced CC chemokine upstream from the major immediate-early region: further evidence for a separate evolutionary lineage from that of rat CMV Maastricht. J Gen Virol 86(Pt 2):263–274CrossRefGoogle Scholar
  31. 31.
    Kwong LS, Akkaya M, Barclay AN, Hatherley D (2016) Herpesvirus orthologues of CD200 bind host CD200R but not related activating receptors. J Gen Virol 97(1):179–184CrossRefGoogle Scholar
  32. 32.
    Foster-Cuevas M, Westerholt T, Ahmed M, Brown MH, Barclay AN, Voigt S (2011) Cytomegalovirus e127 protein interacts with the inhibitory CD200 receptor. J Virol 85(12):6055–6059CrossRefGoogle Scholar
  33. 33.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408CrossRefGoogle Scholar
  34. 34.
    Trinite B, Voisine C, Yagita H, Josien R (2000) A subset of cytolytic dendritic cells in rat. J Immunol 165(8):4202–4208CrossRefGoogle Scholar
  35. 35.
    Sedgwick JD, Ford AL, Foulcher E, Airriess R (1998) Central nervous system microglial cell activation and proliferation follows direct interaction with tissue-infiltrating T cell blasts. J Immunol 160(11):5320–5330PubMedGoogle Scholar
  36. 36.
    Kheradmand T, Trivedi PP, Wolf NA, Roberts PC, Swanborg RH (2008) Characterization of a subset of bone marrow-derived natural killer cells that regulates T cell activation in rats. J Leukoc Biol 83(5):1128–1135CrossRefGoogle Scholar
  37. 37.
    Tanaka T, Masuko T, Yagita H, Tamura T, Hashimoto Y (1989) Characterization of a CD3-like rat T cell surface antigen recognized by a monoclonal antibody. J Immunol 142(8):2791–2795PubMedGoogle Scholar
  38. 38.
    Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6(1):62–66CrossRefGoogle Scholar
  39. 39.
    Brenan M, Puklavec M (1992) The MRC OX-62 antigen: a useful marker in the purification of rat veiled cells with the biochemical properties of an integrin. J Exp Med 175(6):1457–1465CrossRefGoogle Scholar
  40. 40.
    Nady S, Shata MT, Mohey MA, El-Shorbagy A (2017) Protective role of IL-22 against Schistosoma mansoni soluble egg antigen-induced granuloma in vitro. Parasite Immunol 39 (1)CrossRefGoogle Scholar
  41. 41.
    Dijkstra CD, Van Vliet E, Dopp EA, van der Lelij AA, Kraal G (1985) Marginal zone macrophages identified by a monoclonal antibody: characterization of immuno- and enzyme-histochemical properties and functional capacities. Immunology 55(1):23–30PubMedPubMedCentralGoogle Scholar
  42. 42.
    Gotoh S, Itoh M, Fujii Y, Arai S, Sendo F (1986) Enhancement of the expression of a rat neutrophil-specific cell surface antigen by activation with phorbol myristate acetate and concanavalin A. J Immunol 137(2):643–650PubMedGoogle Scholar
  43. 43.
    Robinson AP, White TM, Mason DW (1986) Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57(2):239–247PubMedPubMedCentralGoogle Scholar
  44. 44.
    Minas K, Liversidge J (2006) Is the CD200/CD200 receptor interaction more than just a myeloid cell inhibitory signal? Crit Rev Immunol 26(3):213–230CrossRefGoogle Scholar
  45. 45.
    Barclay AN (1981) The localization of populations of lymphocytes defined by monoclonal antibodies in rat lymphoid tissues. Immunology 42(4):593–600PubMedPubMedCentralGoogle Scholar
  46. 46.
    Barclay AN (1981) Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy-1 and MRC OX 2 antigens. Immunology 44(4):727–736PubMedPubMedCentralGoogle Scholar
  47. 47.
    Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M, Song Y, Jenmalm M, Gorman D, McClanahan T, Liu MR, Brown MH, Sedgwick JD, Phillips JH, Barclay AN (2003) Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 171(6):3034–3046CrossRefGoogle Scholar
  48. 48.
    Barclay AN, Wright GJ, Brooke G, Brown MH (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23(6):285–290CrossRefGoogle Scholar
  49. 49.
    Mehta M, Hetta HF, Abdel-Hameed EA, Rouster SD, Hossain M, Mekky MA, Khalil NK, Mohamed WA, El-Feky MA, Ahmed SH, Daef EA, El-Mokhtar MA, Abdelwahab SF, Medhat A, Sherman KE, Shata MT (2016) Association between IL28B rs12979860 single nucleotide polymorphism and the frequency of colonic Treg in chronically HCV-infected patients. Arch Virol 161(11):3161–3169CrossRefGoogle Scholar
  50. 50.
    Geyer H, Hartung E, Mages HW, Weise C, Beluzic R, Vugrek O, Jonjic S, Kroczek RA, Voigt S (2014) Cytomegalovirus expresses the chemokine homologue vXCL1 capable of attracting XCR1+ CD4 dendritic cells. J Virol 88(1):292–302CrossRefGoogle Scholar
  51. 51.
    Trivedi PP, Roberts PC, Wolf NA, Swanborg RH (2005) NK cells inhibit T cell proliferation via p21-mediated cell cycle arrest. J Immunol 174(8):4590–4597CrossRefGoogle Scholar
  52. 52.
    Smeltz RB, Wolf NA, Swanborg RH (1999) Inhibition of autoimmune T cell responses in the DA rat by bone marrow-derived NK cells in vitro: implications for autoimmunity. J Immunol 163(3):1390–1397PubMedGoogle Scholar
  53. 53.
    Lyons A, Downer EJ, Crotty S, Nolan YM, Mills KH, Lynch MA (2007) CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J Neurosci 27(31):8309–8313CrossRefGoogle Scholar
  54. 54.
    Pietila M, Lehtonen S, Tuovinen E, Lahteenmaki K, Laitinen S, Leskela HV, Natynki A, Pesala J, Nordstrom K, Lehenkari P (2012) CD200 positive human mesenchymal stem cells suppress TNF-alpha secretion from CD200 receptor positive macrophage-like cells. PLoS One 7(2):e31671CrossRefGoogle Scholar
  55. 55.
    Gorczynski RM (2001) Transplant tolerance modifying antibody to CD200 receptor, but not CD200, alters cytokine production profile from stimulated macrophages. Eur J Immunol 31(8):2331–2337CrossRefGoogle Scholar
  56. 56.
    Rolle A, Olweus J (2009) Dendritic cells in cytomegalovirus infection: viral evasion and host countermeasures. APMIS 117(5–6):413–426CrossRefGoogle Scholar
  57. 57.
    Coles SJ, Wang EC, Man S, Hills RK, Burnett AK, Tonks A, Darley RL (2011) CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia 25(5):792–799CrossRefGoogle Scholar
  58. 58.
    Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369(6475):31–37CrossRefGoogle Scholar
  59. 59.
    Yang Q, Goding SR, Hokland ME, Basse PH (2006) Antitumor activity of NK cells. Immunol Res 36(1–3):13–25CrossRefGoogle Scholar
  60. 60.
    Coles SJ, Hills RK, Wang EC, Burnett AK, Man S, Darley RL, Tonks A (2012) Increased CD200 expression in acute myeloid leukemia is linked with an increased frequency of FoxP3+ regulatory T cells. Leukemia 26(9):2146–2148CrossRefGoogle Scholar
  61. 61.
    Tonks A, Hills R, White P, Rosie B, Mills KI, Burnett AK, Darley RL (2007) CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 21(3):566–568CrossRefGoogle Scholar
  62. 62.
    McWhirter JR, Kretz-Rommel A, Saven A, Maruyama T, Potter KN, Mockridge CI, Ravey EP, Qin F, Bowdish KS (2006) Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci USA 103(4):1041–1046CrossRefGoogle Scholar
  63. 63.
    Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, Moine P, Bourin P, Moos M, Corre J, Mohler T, De Vos J, Rossi JF, Goldschmidt H, Klein B (2006) CD200 is a new prognostic factor in multiple myeloma. Blood 108(13):4194–4197CrossRefGoogle Scholar
  64. 64.
    Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J, Oltean D, Frederickson S, Maruyama T, Wild MA, Nolan MJ, Wu D, Springhorn J, Bowdish KS (2007) CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol 178(9):5595–5605CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Infectious DiseasesRobert Koch InstituteBerlinGermany
  2. 2.Department of Pediatric Oncology/Hematology/SCTCharité-UniversitätsmedizinBerlinGermany
  3. 3.Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut UniversityAssiutEgypt

Personalised recommendations