Rab27a facilitates human parainfluenza virus type 2 growth by promoting cell surface transport of envelope proteins
- 142 Downloads
Abstract
Human parainfluenza virus type 2 (hPIV-2) proteins and genomes newly synthesized in the cytoplasm need to be transported to the plasma membrane where budding occurs. This mechanism, where Rab proteins regulate intracellular traffic by switching between GTP-bound active form and GDP-bound inactive form, is not fully understood. mRNA and protein expression levels of Rab8a, Rab11a, and Rab27a are not altered by hPIV-2 infection. hPIV-2 growth is affected by depletion of Rab27a but not Rab8a and Rab11a. Overexpression of a constitutively active mutant of Rab27a Q78L promotes the cell surface levels of fusion (F) and hemagglutinin-neuraminidase (HN) proteins in hPIV-2-infected cells without affecting viral mRNA levels. Increase in the cell surface level of F and HN proteins by Rab27a Q78L is noticeable when these proteins are coexpressed independent of hPIV-2 infection. Our results collectively suggest that the active form of Rab27a enhances hPIV-2 growth by promoting transport of F and HN proteins to the plasma membrane.
Keywords
Human parainfluenza virus type 2 F protein HN protein Rab27a Intracellular transportNotes
Acknowledgements
We are grateful to Dr. Toru Takimoto for pmRFP-C1-Rab8a and pmRFP-C1-Rab11a plasmids.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Lamb RA, Parks GD. (2013) Paramyxoviridae. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (eds), Fields virology, 6th edn, vol 1. Lippincott Williams & Wilkins, Philadelphia, pp 957–995Google Scholar
- 2.Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525. https://doi.org/10.1038/nrm2728 CrossRefPubMedGoogle Scholar
- 3.Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149. https://doi.org/10.1152/physrev.00059.2009 CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Pfeffer SR (2007) Unsolved mysteries in membrane traffic. Annu Rev Biochem 76:629–645. https://doi.org/10.1146/annurev.biochem.76.061705.130002 CrossRefPubMedGoogle Scholar
- 5.Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB (2011) Thousands of rab GTPases for the cell biologist. PLoS Comput Biol 7:e1002217. https://doi.org/10.1371/journal.pcbi.1002217 CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. J Cell Sci 120:3905–3910. https://doi.org/10.1242/jcs.015909 CrossRefPubMedGoogle Scholar
- 7.Zhen Y, Stenmark H (2015) Cellular functions of Rab GTPases at a glance. J Cell Sci 128:3171–3176. https://doi.org/10.1242/jcs.166074 CrossRefPubMedGoogle Scholar
- 8.Yamayoshi S, Neumann G, Kawaoka Y (2010) Role of the GTPase Rab1b in ebolavirus particle formation. J Virol 84:4816–4820. https://doi.org/10.1128/JVI.00010-10 CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Zenner HL, Yoshimura S, Barr FA, Crump CM (2011) Analysis of Rab GTPase-activating proteins indicates that Rab1a/b and Rab43 are important for herpes simplex virus 1 secondary envelopment. J Virol 85:8012–8021. https://doi.org/10.1128/JVI.00500-11 CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Indran SV, Britt WJ (2011) A role for the small GTPase Rab6 in assembly of humancytomegalovirus. J Virol 85:5213–5219. https://doi.org/10.1128/JVI.02605-10 CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Johns HL, Gonzalez-Lopez C, Sayers CL, Hollinshead M, Elliott G (2014) Rab6 dependent post-golgi trafficking of HSV1 envelope proteins to sites of virus envelopment. Traffic 15:157–178. https://doi.org/10.1111/tra.12134 CrossRefPubMedGoogle Scholar
- 12.Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ, Zhao L, Le Doux JM, Shaw MW, Luo CC, Lippincott-Schwartz J, Sanchez A, Rubin DH, Hodge TW (2005) Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 79:11742–11751. https://doi.org/10.1128/JVI.79.18.11742-11751.2005 CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Huber LA, Pimplikar S, Parton RG, Virta H, Zerial M, Simons K (1993) Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J Cell Biol 123:35–45CrossRefPubMedGoogle Scholar
- 14.Chen W, Feng Y, Chen D, Wandinger-Ness A (1998) Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell 9:3241–3257CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Ang AL, Folsch H, Koivisto UM, Pypaert M, Mellman I (2003) The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J Cell Biol 163:339–350. https://doi.org/10.1083/jcb.200307046 CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Ikonen E, Tagaya M, Ullrich O, Montecucco C, Simons K (1995) Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell 81:571–580CrossRefPubMedGoogle Scholar
- 17.Rowe RK, Suszko JW, Pekosz A (2008) Roles for the recycling endosome, Rab8, and Rab11 in hantavirus release from epithelial cells. Virology 382:239–249. https://doi.org/10.1016/j.virol.2008.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Xu XF, Chen ZT, Zhang JL, Chen W, Wang JL, Tian YP, Gao N, An J (2008) Rab8, a vesicular traffic regulator, is involved in dengue virus infection in HepG2 cells. Intervirology 51:182–188. https://doi.org/10.1159/000151531 CrossRefPubMedGoogle Scholar
- 19.Xu XF, Chen ZT, Gao N, Zhang JL, An J (2009) Myosin Vc, a member of the actin motor family associated with Rab8, is involved in the release of DV2 from HepG2 cells. Intervirology 52:258–265. https://doi.org/10.1159/000230669 CrossRefPubMedGoogle Scholar
- 20.Eisfeld AJ, Kawakami E, Watanabe T, Neumann G, Kawaoka Y (2011) RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J Virol 85:6117–6126. https://doi.org/10.1128/JVI.00378-11 CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Momose F, Sekimoto T, Ohkura T, Jo S, Kawaguchi A, Nagata K, Morikawa Y (2011) Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome. PLoS One 6:e21123. https://doi.org/10.1371/journal.pone.0021123 CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Kawaguchi A, Matsumoto K, Nagata K (2012) YB-1 functions as a porter to lead influenza virus ribonucleoprotein complexes to microtubules. J Virol 86:11086–11095. https://doi.org/10.1128/JVI.00453-12 CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Chambers R, Takimoto T (2010) Trafficking of Sendai virus nucleocapsids is mediated by intracellular vesicles. PLoS One 5:e10994. https://doi.org/10.1371/journal.pone.0010994 CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Nakatsu Y, Ma X, Seki F, Suzuki T, Iwasaki M, Yanagi Y, Komase K, Takeda M (2013) Intracellular transport of the measles virus ribonucleoprotein complex is mediated by Rab11A-positive recycling endosomes and drives virus release from the apical membrane of polarized epithelial cells. J Virol 87:4683–4693. https://doi.org/10.1128/JVI.02189-12 CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Katoh H, Nakatsu Y, Kubota T, Sakata M, Takeda M, Kidokoro M (2015) Mumps virus is released from the apical surface of polarized epithelial cells, and the release is facilitated by a Rab11-mediated transport system. J Virol 89:12026–12034. https://doi.org/10.1128/JVI.02048-15 CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Stone R, Hayashi T, Bajimaya S, Hodges E, Takimoto T (2016) Critical role of Rab11a-mediated recycling endosomes in the assembly of type I parainfluenza viruses. Virology 487:11–18. https://doi.org/10.1016/j.virol.2015.10.008 CrossRefPubMedGoogle Scholar
- 27.Tolmachova T, Anders R, Stinchcombe J, Bossi G, Griffiths GM, Huxley C, Seabra MC (2004) A general role for Rab27a in secretory cells. Mol Biol Cell 15:332–344. https://doi.org/10.1091/mbc.E03-07-0452 CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Izumi T (2007) Physiological roles of Rab27 effectors in regulated exocytosis. Endocr J 54:649–657CrossRefPubMedGoogle Scholar
- 29.Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30. https://doi.org/10.1038/ncb2000 CrossRefPubMedGoogle Scholar
- 30.Kimura T, Niki I (2011) Rab27a in pancreatic beta-cells, a busy protein in membrane trafficking. Prog Biophys Mol Biol 107:219–223. https://doi.org/10.1016/j.pbiomolbio.2011.06.016 CrossRefPubMedGoogle Scholar
- 31.Fraile-Ramos A, Cepeda V, Elstak E, van der Sluijs P (2010) Rab27a is required for human cytomegalovirus assembly. PLoS One 5:e15318. https://doi.org/10.1371/journal.pone.0015318 CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Bello-Morales R, Crespillo AJ, Fraile-Ramos A, Tabarés E, Alcina A, López-Guerrero JA (2012) Role of the small GTPase Rab27a during herpes simplex virus infection of oligodendrocytic cells. BMC Microbiol 12:265. https://doi.org/10.1186/1471-2180-12-265 CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Nagashima S, Jirintai S, Takahashi M, Kobayashi T, Nishizawa T, Kouki T, Yashiro T, Okamoto H (2014) Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies. J Gen Virol 95:2166–2175. https://doi.org/10.1099/vir.0.066910-0 CrossRefPubMedGoogle Scholar
- 34.Gerber PP, Cabrini M, Jancic C, Paoletti L, Banchio C, von Bilderling C, Sigaut L, Pietrasanta LI, Duette G, Freed EO, Basile Gde S, Moita CF, Moita LF, Amigorena S, Benaroch P, Geffner J, Ostrowski M (2015) Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J Cell Biol 209:435–452. https://doi.org/10.1083/jcb.201409082 CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Tsurudome M, Nishio M, Komada H, Bando H, Ito Y (1989) Extensive antigenic diversity among human parainfluenza type 2 virus isolates andimmunological relationships among paramyxoviruses revealed by monoclonal antibodies. Virology 171:38–48CrossRefPubMedGoogle Scholar
- 36.Nishio M, Tsurudome M, Ito M, Watanabe N, Kawano M, Komada H, Ito Y (1997) Human parainfluenza virus type 2 phosphoprotein: mapping of monoclonal antibody epitopes and location of the multimerization domain. J Gen Virol 78:1303–1308. https://doi.org/10.1099/0022-1317-78-6-1303 CrossRefPubMedGoogle Scholar
- 37.Nishio M, Tsurudome M, Ito M, Kawano M, Kusagawa S, Komada H, Ito Y (1999) Isolation of monoclonal antibodies directed against the V protein of human parainfluenza virus type 2 and localization of the V protein in virus-infected cells. Med Microbiol Immunol 188:79–82. https://doi.org/10.1099/0022-1317-80-8-2017 CrossRefPubMedGoogle Scholar
- 38.Nishio M, Tsurudome M, Ito M, Ito Y (2000) Mapping of domains on the human parainfluenza type 2 virus P and NP proteins that are involved in the interaction with the L protein. Virology 273:241–247. https://doi.org/10.1006/viro.2000.0429 CrossRefPubMedGoogle Scholar
- 39.Nishio M, Tsurudome M, Kawano M, Watanabe N, Ohgimoto S, Ito M, Komada H, Ito Y (1996) Interaction between nucleocapsid protein (NP) and phosphoprotein (P) of human parainfluenza virus type 2: one of the two NP binding sites on P is essential for granule formation. J Gen Virol 77:2457–2463CrossRefPubMedGoogle Scholar
- 40.Nishio M, Tsurudome M, Ito M, Garcin D, Kolakofsky D, Ito Y (2005) Identification of paramyxovirus V protein residues essential for STAT protein degradation and promotion of virus replication. J Virol 79:8591–8601. https://doi.org/10.1128/JVI.79.13.8591-8601.2005 CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Menasche G, Feldmann J, Houdusse A, Desaymard C, Fischer A, Goud B, de Saint Basile G (2003) Biochemical and functional characterization of Rab27a mutations occurring in Griscelli syndrome patients. Blood 101:2736–2742. https://doi.org/10.1182/blood-2002-09-2789 CrossRefPubMedGoogle Scholar
- 42.Matsumoto Y, Ohta K, Goto H, Nishio M (2016) Parainfluenza virus chimeric mini-replicons indicate a novel regulatory element in the leader promoter. J Gen Virol 97:1520–1530. https://doi.org/10.1099/jgv.0.000479 CrossRefPubMedGoogle Scholar
- 43.Nishio M, Garcin D, Simonet V, Kolakofsky D (2002) The carboxyl segment of the mumps virus V protein associates with Stat proteins in vitro via a tryptophan-rich motif. Virology 300:92–99. https://doi.org/10.1006/viro.2002.1509 CrossRefPubMedGoogle Scholar
- 44.Takei D, Ishihara H, Yamaguchi S, Yamada T, Tamura A, Maruyama Y, Oka Y (2006) WFS1 protein modulates the free Ca2 concentration in the endoplasmic reticulum. FEBS Lett 580:5635–5640. https://doi.org/10.1016/j.febslet.2006.09.007 CrossRefPubMedGoogle Scholar
- 45.Ohta K, Goto H, Yumine N, Nishio M (2016) Human parainfluenza virus type 2 V protein inhibits and antagonizes tetherin. J Gen Virol 97:561–570. https://doi.org/10.1128/JVI.01471-16 CrossRefPubMedGoogle Scholar
- 46.Hume AN, Collinson LM, Rapak A, Gomes AQ, Hopkins CR, Seabra MC (2001) Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J Cell Biol 152:795–808CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Yi Z, Yokota H, Torii S, Aoki T, Hosaka M, Zhao S, Takata K, Takeuchi T, Izumi T (2002) The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules. Mol Cell Biol 22:1858–1867CrossRefPubMedPubMedCentralGoogle Scholar
- 48.Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2:REVIEWS3007CrossRefPubMedPubMedCentralGoogle Scholar
- 49.Anderson MR, Kashanchi F, Jacobson S (2016) Exosomes in viral disease. Neurotherapeutics 13:535–546. https://doi.org/10.1007/s13311-016-0450-6 CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Schmitt AP, Leser GP, Waning DL, Lamb RA (2002) Requirements for budding of paramyxovirus simian virus 5 virus-like particles. J Virol 76:3952–3964CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Li M, Schmitt PT, Li Z, McCrory TS, He B, Schmitt AP (2009) Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. J Virol 83:7261–7272. https://doi.org/10.1128/JVI.00421-09 CrossRefPubMedPubMedCentralGoogle Scholar
- 52.Coronel EC, Murti KG, Takimoto T, Portner A (1999) Human parainfluenza virus type 1 matrix and nucleoprotein genes transiently expressed in mammalian cells induce the release of virus-like particles containing nucleocapsid-like structures. J Virol 73:7035–7038PubMedPubMedCentralGoogle Scholar
- 53.Takimoto T, Murti KG, Bousse T, Scroggs RA, Portner A (2001) Role of matrix and fusion proteins in budding of Sendai virus. J Virol 75:11384–11391. https://doi.org/10.1128/JVI.75.23.11384-11391.2001 CrossRefPubMedPubMedCentralGoogle Scholar
- 54.Pantua HD, McGinnes LW, Peeples ME, Morrison TG (2006) Requirements for the assembly and release of Newcastle disease virus-like particles. J Virol 80:11062–11073. https://doi.org/10.1128/JVI.00726-06 CrossRefPubMedPubMedCentralGoogle Scholar
- 55.Pohl C, Duprex WP, Krohne G, Rima BK, Schneider-Schaulies S (2007) Measles virus M and F proteins associate with detergent-resistant membrane fractions and promote formation of virus-like particles. J Gen Virol 88:1243–1250. https://doi.org/10.1099/vir.0.82578-0 CrossRefPubMedGoogle Scholar
- 56.Runkler N, Pohl C, Schneider-Schaulies S, Klenk H-D, Maisner A (2007) Measles virus nucleocapsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. Cell Microbiol 9:1203–1214. https://doi.org/10.1111/j.1462-5822.2006.00860.x CrossRefPubMedGoogle Scholar
- 57.Ciancanelli MJ, Basler CF (2006) Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 80:12070–12078. https://doi.org/10.1128/JVI.01743-06 CrossRefPubMedPubMedCentralGoogle Scholar
- 58.Patch JR, Crameri G, Wang LF, Eaton BT (2007) Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein. Virol J 4:1. https://doi.org/10.1186/1743-422X-4-1 CrossRefPubMedPubMedCentralGoogle Scholar
- 59.Ohta K, Matsumoto Y, Ito M, Nishio M (2017) Tetherin antagonism by V proteins is a common trait among the genus Rubulavirus. Med Microbiol Immunol 206:319–326. https://doi.org/10.1007/s00430-017-0509-y CrossRefPubMedGoogle Scholar
- 60.Matsumoto Y, Ohta K, Nishio M (2017) Human parainfluenza virus type 2 polymerase complex recognizes leader promoters of other species belonging to the genus Rubulavirus. Med Microbiol Immunol. https://doi.org/10.1007/s00430-017-0520-3 Google Scholar
- 61.Fukuda M (2002) Synaptotagmin-like protein (Slp) homology domain 1 of Slac2-a/melanophilin is a critical determinant of GTP-dependent specific binding to Rab27A. J Biol Chem 277:40118–40124. https://doi.org/10.1074/jbc.M205765200 CrossRefPubMedGoogle Scholar
- 62.Fukuda M (2005) Versatile role of Rab27 in membrane trafficking: focus on the Rab27 effector families. J Biochem 137:9–16. https://doi.org/10.1093/jb/mvi002 CrossRefPubMedGoogle Scholar