Advertisement

Diagnostic performance in active TB of QFT-Plus assay and co-expression of CD25/CD134 in response to new antigens of Mycobacterium tuberculosis

  • Ilaria SauzulloEmail author
  • Fabio Mengoni
  • Claudia Mascia
  • Paolo Pavone
  • Giulia Savelloni
  • Anna Paola Massetti
  • Miriam Lichtner
  • Vincenzo Vullo
  • Claudio M. Mastroianni
Original Investigation
  • 36 Downloads

Abstract

The new QuantiFERON-TB Gold Plus employs modified peptides optimized to elicit an IFNγ response from CD8+ cytotoxic T lymphocytes in addition to CD4+ T cells. With a view to improve the difficult identification of TB cases, we assessed the combination of two specific immunological markers comprising IFNγ secretion and T cells co-expression of CD25 and CD134 in response to Mycobacterium tuberculosis-specific antigens. A total of 34 subjects with suspected TB and 10 age-matched HD were prospectively enrolled. Assessing the performance of QFT-Plus in terms of the TB1 and TB2 results, we found that in TB patients, the quantitative IFNγ value in TB2 was similar to that in TB1, and we did not find any differences irrespective of the disease (pulmonary or extra-pulmonary). The flow cytometric CD25/CD134 assay, allowed a more accurate differentiation between M. tuberculosis-infected and uninfected patients, with a better combination of sensitivity and specificity, especially by evaluation of CD4+ T-cell subset. All individuals with negative QFT-Plus results displayed a positive CD25/CD134 response. Overall, a positive correlation was found between T cells co-expressing CD25/CD134 and IFNγ levels in response to both QFT-Plus TB antigen tubes, as well as between the QFT-Plus TB1 and TB2 tubes. We demonstrated that both TB1 and TB2 induce a higher expression of CD25+CD134+ markers on CD4+ T cells among infected TB subjects, compared to the lower degree of CD8+ T cells, mainly induced to TB2 stimulation. We suggest that a combined use of classic QFT-Plus and specific CD25/CD134 response may be a useful means in the diagnostic workup for active TB.

Keywords

QFT-Plus Tuberculosis Flow cytometry CD25/CD134 

Notes

Acknowledgements

The authors gratefully acknowledge Qiagen for providing the QFT-Plus kits, and they acknowledge Parni Nijhawan for editing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    WHO (2017) Global Tuberculosis Report 2017. World Health Organization, Geneva. http://www.who.int/tb/publications/global_report/en/. Accessed 3 July 2017
  2. 2.
    Fry DE (2016) Extra-pulmonary tuberculosis and its surgical treatment. Surg Infect 17:394–401CrossRefGoogle Scholar
  3. 3.
    Ali Chaudhry L, Al-Solaiman S (2013) Multifocal tuberculosis: many faces of an old menace. Int J Mycobacteriol 2:58–69CrossRefGoogle Scholar
  4. 4.
    Tyagi S, Sharma N, Tyagi JS, Haldar S (2017) Challenges in pleural tuberculosis diagnosis: existing reference standards and nucleic acid tests. Future Microbiol 12:1201–1218.  https://doi.org/10.2217/fmb-2017-0028 CrossRefGoogle Scholar
  5. 5.
    Whitworth HS, Scott M, Connell DW, Dongés B, Lalvani A (2013) IGRAs—the gateway to T cell based TB diagnosis. Methods 61:52–62CrossRefGoogle Scholar
  6. 6.
    Andersen P, Munk ME, Pollock JM, Doherty TM (2000) Specific immune-based diagnosis of tuberculosis. Lancet 356:1099–1104CrossRefGoogle Scholar
  7. 7.
    QuantiFERON®-TB Gold Plus (QFT®-Plus) ELISA Package Insert. QUIAGEN http://www.quantiferon.com/irm/content/PI/QFT/PLUS/2PK-Elisa/UK.pdf. Accessed 7 Oct 2017
  8. 8.
    Zaunders JJ, Munier ML, Seddiki N, Pett S, Ip S, Bailey M et al (2009) High levels of human antigen-specific CD4 + T cells in peripheral blood revealed by stimulated coexpression of CD25 and CD134 (OX40). J Immunol 183:2827–2836.  https://doi.org/10.4049/jimmunol.0803548 CrossRefGoogle Scholar
  9. 9.
    Metcalfe JZ, Cattamanchi A, McCulloch CE, Lew JD, Ha NP, Graviss EA (2013) Test variability of the QuantiFERON-TB gold in-tube assay in clinical practice. Am J Respir Crit Care Med 187:206–211.  https://doi.org/10.1164/rccm.201203-0430OC CrossRefGoogle Scholar
  10. 10.
    Barcellini L, Borroni E, Brown J, Brunetti E, Campisi D, Castellotti PF et al (2016) First evaluation of QuantiFERON-TB Gold Plus performance in contact screening. Eur Respir J 48:1411–1419.  https://doi.org/10.1183/13993003.00510-2016 CrossRefGoogle Scholar
  11. 11.
    Chen X, Zhou B, Li M, Deng Q, Wu X, Le X et al (2007) CD4 + CD25 + FoxP3 + regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin Immunol 123:50–59CrossRefGoogle Scholar
  12. 12.
    Ferrara G, Losi M, Meacci M, Meccugni B, Piro R, Roversi P et al (2005) Routine hospital use of a new commercial whole blood interferon-gamma assay for the diagnosis of tuberculosis infection. Am J Respir Crit Care Med 172:631–635CrossRefGoogle Scholar
  13. 13.
    Kim K, Perera R, Tan DBA, Fernandez S, Seddiki N, Waring, French MA (2014) Circulating mycobacterial-reactive CD4 + T cells with an immunosuppressive phenotype are higher in active tuberculosis than latent tuberculosis infection. Tuberculosis 94:450–494Google Scholar
  14. 14.
    Serbina NV, Lazarevic V, Flynn JL (2001) CD4 (+) T cells are required for the development of cytotoxic CD8(+) T cells during Mycobacterium tuberculosis infection. J Immunol 167:6991–7000CrossRefGoogle Scholar
  15. 15.
    Hogan C, Tien S, Pai M, Banaei N (2018) Higher positivity rate with 4th generation QuantiFERON-TB Gold Plus assay in low-risk U.S. healthcare workers. J Clin Microbiol.  https://doi.org/10.1128/JCM.01688-18 Google Scholar
  16. 16.
    Hoffmann H, Avsar K, Gores R, Mavi SC, Hofmann-Thiel S (2016) Equal sensitivity of the new generation QuantiFERON-TB Gold Plus in direct comparison with the previous test version QuantiFERON-TB Gold IT. Clin Microbiol Infect 22:701–703.  https://doi.org/10.1016/j.cmi.2016.05.006. (Epub 2016 May 13)CrossRefGoogle Scholar
  17. 17.
    Moon HW, Gaur RL, Tien SS, Spangler M, Pai M, Banaei N (2017) Evaluation of QuantiFERON-TB Gold-Plus in health care workers in a low incidence setting. J Clin Microbiol 55:1650 – 1657.  https://doi.org/10.1128/JCM.02498-16 CrossRefGoogle Scholar
  18. 18.
    Telisinghe L, Amofa-Sekyi M, Maluzi K, Kaluba-Milimo D, Cheeba-Lengwe M, Chiwele K et al (2017) The sensitivity of the QuantiFERON-TB Gold Plus assay in Zambian adults with active tuberculosis. Int J Tuberc Lung Dis 21:690–696.  https://doi.org/10.5588/ijtld.16.0764 CrossRefGoogle Scholar
  19. 19.
    Takasaki J, Manabe T, Morino E, Muto Y, Hashimoto M, Iikura M et al (2018) Sensitivity and specificity of QuantiFERON-TB Gold Plus compared with QuantiFERON-TB Gold In-Tube and T-SPOT.TB on active tuberculosis in Japan. J Infect Chemother 24:188 – 192.  https://doi.org/10.1016/j.jiac.2017.10.009 CrossRefGoogle Scholar
  20. 20.
    Theel ES, Hilgart H, Breen-Lyles M, McCoy K, Flury R, Breeher LE et al (2018) Comparison of the QuantiFERON-TB Gold Plus and QuantiFERON-TB Gold In-Tube interferon gamma release assays in patients at risk for tuberculosis and in health care workers. J Clin Microbiol 56:e00614–e00618.  https://doi.org/10.1128/JCM.00614-18 Google Scholar
  21. 21.
    Petruccioli E, Vanini V, Chiacchio T, Cuzzi G, Cirillo DM, Palmieri F et al (2017) Analytical evaluation of QuantiFERON-Plus and QuantiFERON-Gold In-tube assays in subjects with or without tuberculosis. Tuberculosis 106:38–43.  https://doi.org/10.1016/j.tube.2017.06.002 CrossRefGoogle Scholar
  22. 22.
    Nicol MP, Sola C, February B, Rastogi N, Steyn L, Wilkinson RJ (2005) Distribution of strain families of Mycobacterium tuberculosis causing pulmonary and extrapulmonary disease in hospitalized children in Cape Town, South Africa. J Clin Microbiol 43:5779–5781CrossRefGoogle Scholar
  23. 23.
    Pathan AA, Wilkinson KA, Klenerman P, McShane H, Davidson RN, Pasvol G et al (2001) Direct ex vivo analysis of antigen specific IFN-gamma—secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment. J Immunol 167:5217–5225CrossRefGoogle Scholar
  24. 24.
    Jafari C, Thijsen S, Sotgiu G, Goletti D, Dominguez Benitez JA, Losi M et al (2009) Bronchoalveolar lavage enzyme-linked immunospot for a rapid diagnosis of tuberculosis: a Tuberculosis Network European Trials group study. Am J Respir Crit Care Med 180:666–673CrossRefGoogle Scholar
  25. 25.
    Croft M (2003) Co-stimulatory members of the TNFR family: keys to effective T cell immunity? Nat Rev Immunol 3:609–620CrossRefGoogle Scholar
  26. 26.
    Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, Zheng L (1999) Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Ann Rev Immunol 17:221–253CrossRefGoogle Scholar
  27. 27.
    Petruccioli E, Chiacchio T, Pepponi I, Vanini V, Urso R, Cuzzi G et al (2016) First characterization of the CD4 and CD8 T-cell responses to QuantiFERON-TB Plus. J Infect 73:588–597.  https://doi.org/10.1016/j.jinf.2016.09.008 CrossRefGoogle Scholar
  28. 28.
    Brookes RH, Pathan AA, McShane H, Hensmann M, Price DA, Hill AV (2003) CD8 + T cell-mediated suppression of intracellular Mycobacterium tuberculosis growth in activated human macrophages. Eur J Immunol 33:3293–3302CrossRefGoogle Scholar
  29. 29.
    Day CL, Abrahams DA, Lerumo L, Janse van Rensburg E, Stone L, O’rie T et al (2011) Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J Immunol 187:2222–2232.  https://doi.org/10.4049/jimmunol.1101122 CrossRefGoogle Scholar
  30. 30.
    Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M et al (2013) Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 43:1568–1577.  https://doi.org/10.1002/eji.201243262 CrossRefGoogle Scholar
  31. 31.
    Rozot V, Patrizia A, Vigano S, Mazza-Stalder J, Idrizi E, Day CL et al (2015) Combined use of Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses is a powerful diagnostic tool of active tuberculosis. Clin Infec Dis 60:432–437.  https://doi.org/10.1093/cid/ciu795 CrossRefGoogle Scholar
  32. 32.
    Lewinsohn DA, Heinzel AS, Gardner JM, Zhu L, Alderson MR, Lewinsohn DM (2003) Mycobacterium tuberculosis-specific CD8 + T cells preferentially recognize heavily infected cells. Am J Respir Crit Care Med 168:1346–1352CrossRefGoogle Scholar
  33. 33.
    Commandeur S, van Meijgaarden KE, Prins C (2013) An unbiased genome-wide Mycobacterium tuberculosis gene expression approach to discover antigens targeted by human T cells expressed during pulmonary infection. J Immunol 190:1659–1671.  https://doi.org/10.4049/jimmunol.1201593 CrossRefGoogle Scholar
  34. 34.
    Nyendak MR, Park B, Null MD, Baseke J, Swarbrick G, Mayanja-Kizza H et al (2013) Mycobacterium tuberculosis specific CD8(+) T cells rapidly decline with antituberculosis treatment. PLoS One 8:e81564.  https://doi.org/10.1371/journal.pone.0081564 CrossRefGoogle Scholar
  35. 35.
    Lancioni C, Nyendak M, Kiguli S, Zalwango S, Mori T, MayanjaKizza H et al (2012) CD8+ T cells provide an immunologic signature of tuberculosis in young children. Am J Respir Crit Care Med 185:206–212.  https://doi.org/10.1164/rccm.201107-1355OC CrossRefGoogle Scholar
  36. 36.
    Caccamo N, Meraviglia S, La Mendola C, Guggino G, Dieli F, Salerno A (2006) Phenotypical and functional analysis of memory and effector human CD8 T cells specific for mycobacterial antigens. J Immunol 177:1780–1785CrossRefGoogle Scholar
  37. 37.
    Dieli F, Friscia G, Di Sano C, Ivanyi J, Singh M, Spallek R et al (1999) Sequestration of T lymphocytes to body fluids in tuberculosis: reversal of anergy following chemotherapy. J Infect Dis 180:225–228CrossRefGoogle Scholar
  38. 38.
    Hsu DC, Zaunders JJ, Plit M, Leeman C, Ip S, Iampornsin T et al (2012) A novel assay detecting recall response to Mycobacterium tuberculosis: comparison with existing assays. Tuberculosis 92:321–327.  https://doi.org/10.1016/j.tube.2012.03.008 CrossRefGoogle Scholar
  39. 39.
    Escalante P, Peikert T, Van Keulen VP, Erskine CL, Bornhorst CL, Andrist BR et al (2015) Combinatorial immunoprofiling in latent tuberculosis infection. Toward better risk stratification. Am J Respir Crit Care Med 192:605–617.  https://doi.org/10.1164/rccm.201412-2141OC CrossRefGoogle Scholar
  40. 40.
    Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH et al (2006) A role for CD4 + CD25 + T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144:25–34CrossRefGoogle Scholar
  41. 41.
    Pennington K, Sasieta HC, Ramos GP, Erskine CL, Van Keulen VP, Peikert T, Escalante P (2017) Flow cytometric immune profiling in infliximab-associated tuberculosis. Clin Med Insights Case Rep 10:1–3.  https://doi.org/10.1177/1179547617724776 CrossRefGoogle Scholar
  42. 42.
    Sauzullo I, Scrivo R, Sessa P, Mengoni F, Vullo V, Valesini G, Mastroianni CM (2018) Changes in T cell effector functions over an 8-year period with TNF antagonists in patients with chronic inflammatory rheumatic diseases. Sci Rep 8:7881.  https://doi.org/10.1038/s41598-018-26097-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ilaria Sauzullo
    • 1
    Email author return OK on get
  • Fabio Mengoni
    • 1
  • Claudia Mascia
    • 1
  • Paolo Pavone
    • 1
  • Giulia Savelloni
    • 1
  • Anna Paola Massetti
    • 1
  • Miriam Lichtner
    • 1
    • 2
  • Vincenzo Vullo
    • 1
  • Claudio M. Mastroianni
    • 1
  1. 1.Department of Public Health and Infectious Diseases‘Sapienza’ UniversityRomeItaly
  2. 2.Infectious Diseases UnitSapienza UniversityLatinaItaly

Personalised recommendations