Medical Microbiology and Immunology

, Volume 207, Issue 2, pp 83–94 | Cite as

The microbiology and treatment of human mastitis

  • Angeliki Angelopoulou
  • Des Field
  • C. Anthony Ryan
  • Catherine Stanton
  • Colin Hill
  • R. Paul Ross
Review

Abstract

Mastitis, which is generally described as an inflammation of breast tissue, is a common and debilitating disease which frequently results in the cessation of exclusive breastfeeding and affects up to 33% of lactating women. The condition is a primary cause of decreased milk production and results in organoleptic and nutritional alterations in milk quality. Recent studies employing culture-independent techniques, including metagenomic sequencing, have revealed a loss of bacterial diversity in the microbiome of mastitic milk samples compared to healthy milk samples. In those infected, the pathogens Staphylococcus aureus, Staphylococcus epidermidis and members of corynebacteria have been identified as the predominant etiological agents in acute, subacute and granulomatous mastitis, respectively. The increased incidence of antibiotic resistance in the causative species is also a key cause of concern for treatment of the disease, thus leading to the need to develop novel therapies. In this respect, probiotics and bacteriocins have revealed potential as alternative treatments.

Keywords

Human mastitis Microbiota Antibiotics Probiotics Bacteriocins 

Notes

Acknowledgements

This work was funded by APC Microbiome Ireland, a Centre for Science and Technology (CSET) funded by the Science Foundation Ireland (SFI), grant number SFI/12/RC/2273, Toddlerfood (14/F/821) and Infamilk (15/F/721) projects funded through the Irish Department of Agriculture, Food and the Marine (DAFM).

Author contributions

AA drafted the manuscript. DF, AR, CS, CH and PR revised and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. 1.
    Martin CR, Ling PR, Blackburn GL (2016) Review of infant feeding: key features of breast milk and infant formula. Nutrients 8(5):279.  https://doi.org/10.3390/nu8050279 CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J et al (2016) Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387(10017):475–490.  https://doi.org/10.1016/S0140-6736(15)01024-7 CrossRefPubMedGoogle Scholar
  3. 3.
    WHO (2000) Mastitis: causes and management. World Health Organization, Geneva, pp 1–45Google Scholar
  4. 4.
    Abou-Dakn M, Richardt A, Schaefer-Graf U, Wockel A (2010) Inflammatory breast diseases during lactation: milk stasis, puerperal mastitis, abscesses of the breast and malignant tumors–current and evidence-based strategies for diagnosis and therapy. Breast Care 5(1):33–37.  https://doi.org/10.1159/000272223 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Amir LH, Cullinane M, Garland SM, Tabrizi SN, Donath SM, Bennett CM et al (2011) The role of micro-organisms (Staphylococcus aureus and Candida albicans) in the pathogenesis of breast pain and infection in lactating women: study protocol. BMC Pregnancy Childbirth 11:54.  https://doi.org/10.1186/1471-2393-11-54
  6. 6.
    Li R, Fein SB, Chen J, Grummer-Strawn LM (2008) Why mothers stop breastfeeding: mothers’ self-reported reasons for stopping during the first year. Pediatrics 122(Suppl 2):S69–S76.  https://doi.org/10.1542/peds.2008-1315i
  7. 7.
    Osterman KL, Rahm VA (2000) Lactation mastitis: bacterial cultivation of breast milk, symptoms, treatment, and outcome. J Hum Lact 16(4):297–302.  https://doi.org/10.1177/089033440001600405 CrossRefPubMedGoogle Scholar
  8. 8.
    Betzold CM (2007) An update on the recognition and management of lactational breast inflammation. J Midwifery Womens Health 52(6):595–605.  https://doi.org/10.1016/j.jmwh.2007.08.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Cullinane M, Amir LH, Donath SM, Garland SM, Tabrizi SN, Payne MS et al (2015) Determinants of mastitis in women in the CASTLE study: a cohort study. BMC Fam Pract 16(1):181.  https://doi.org/10.1186/s12875-015-0396-5 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fernández L, Arroyo R, Espinosa I, Marín M, Jiménez E, Rodríguez JM (2014) Probiotics for human lactational mastitis. Benef Microb 5(2):169–183.  https://doi.org/10.3920/bm2013.0036 CrossRefGoogle Scholar
  11. 11.
    Jiménez E, Fernández L, Maldonado A, Martín R, Olivares M, Xaus J et al (2008) Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Appl Environ Microbiol 74(15):4650–4655.  https://doi.org/10.1128/aem.02599-07 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Civardi E, Garofoli F, Tzialla C, Paolillo P, Bollani L, Stronati M (2013) Microorganisms in human milk: lights and shadows. J Matern Fetal Neonatal Med 26(Suppl 2):30–34.  https://doi.org/10.3109/14767058.2013.829693
  13. 13.
    Foxman B, D’Arcy H, Gillespie B, Bobo JK, Schwartz K (2002) Lactation mastitis: occurrence and medical management among 946 breastfeeding women in the United States. Am J Epidemiol 155(2):103–114.  https://doi.org/10.1093/aje/155.2.103 CrossRefPubMedGoogle Scholar
  14. 14.
    Kinlay JR, O’Connell DL, Kinlay S (2001) Risk factors for mastitis in breastfeeding women: results of a prospective cohort study. Aust N Z J Public Health 25(2):115–120.  https://doi.org/10.1111/j.1753-6405.2001.tb01831.x CrossRefPubMedGoogle Scholar
  15. 15.
    Scott JA, Robertson M, Fitzpatrick J, Knight C, Mulholland S (2008) Occurrence of lactational mastitis and medical management: a prospective cohort study in Glasgow. Int Breastfeed J 3(1):21.  https://doi.org/10.1186/1746-4358-3-21 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mediano P, Fernández L, Rodríguez JM, Marín M (2014) Case-control study of risk factors for infectious mastitis in Spanish breastfeeding women. BMC Pregnancy Childbirth 14:195.  https://doi.org/10.1186/1471-2393-14-195 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jonsson S, Pulkkinen MO (1994) Mastitis today: incidence, prevention and treatment. Ann Chir Gynaecol Suppl 208:84–87PubMedGoogle Scholar
  18. 18.
    Amir LH, Forster DA, Lumley J, McLachlan H (2007) A descriptive study of mastitis in Australian breastfeeding women: incidence and determinants. BMC Public Health 7(1):62.  https://doi.org/10.1186/1471-2458-7-62 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Spencer JP (2008) Management of mastitis in breastfeeding women. Am Fam Phys 78(6):727–731Google Scholar
  20. 20.
    Patel SH, Vaidya YH, Patel RJ, Pandit RJ, Joshi CG, Kunjadiya AP (2017) Culture independent assessment of human milk microboal community in lactational mastitis. Sci Rep 7:7804.  https://doi.org/10.1038/s41598-017-08451-728 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    West PA, Hewitt JH, Murphy OM (1979) The influence of methods of collection and storage on the bacteriology of human milk. J Appl Microbiol 46(2):269–277.  https://doi.org/10.1111/j.1365-2672.1979.tb00820.x Google Scholar
  22. 22.
    Heikkila MP, Saris PE (2003) Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 95(3):471–478.  https://doi.org/10.1046/j.1365-2672.2003.02002.x CrossRefPubMedGoogle Scholar
  23. 23.
    Perez PF, Doré J, Leclerc M, Levenez F, Benyacoub J, Serrant P et al (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119(3):e724.  https://doi.org/10.1542/peds.2006-1649 CrossRefPubMedGoogle Scholar
  24. 24.
    Collado MC, Delgado S, Maldonado A, Rodríguez JM (2009) Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett Appl Microbiol 48(5):523–528.  https://doi.org/10.1111/j.1472-765X.2009.02567.x CrossRefPubMedGoogle Scholar
  25. 25.
    Hunt KM, Foster JA, Forney LJ, Schütte UME, Beck DL, Abdo Z et al (2011) Characterization of the diversity and temporal stability of bacterial communities in human milk. PLOS One 6(6):e21313.  https://doi.org/10.1371/journal.pone.0021313 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jiménez E, de Andrés J, Manrique M, Pareja-Tobes P, Tobes R, Martínez-Blanch JF et al (2015) Metagenomic analysis of milk of healthy and mastitis-suffering women. J Jum Lact 31(3):406–415.  https://doi.org/10.1177/0890334415585078 CrossRefGoogle Scholar
  27. 27.
    Mediano P, Fernández L, Jiménez E, Arroyo R, Espinosa-Martos I, Rodríguez JM et al (2017) Microbial diversity in milk of women with mastitis: potential role of coagulase-negative staphylococci, viridans group streptococci, and corynebacteria. J Jum Lact 33(2):309–318.  https://doi.org/10.1177/0890334417692968 CrossRefGoogle Scholar
  28. 28.
    Murphy K, Curley D, O’Callaghan TF, O’Shea C-A, Dempsey EM, O’Toole PW et al (2017) The Composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep 7:40597.  https://doi.org/10.1038/srep40597 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2(4):361–367.  https://doi.org/10.1038/86373 CrossRefPubMedGoogle Scholar
  30. 30.
    Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303(5664):1662–1665.  https://doi.org/10.1126/science.1091334 CrossRefPubMedGoogle Scholar
  31. 31.
    Kort R, Caspers M, van de Graaf A, van Egmond W, Keijser B, Roeselers G (2014) Shaping the oral microbiota through intimate kissing. Microbiome 2(1):41.  https://doi.org/10.1186/2049-2618-2-41 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ross AA, Doxey AC, Neufeld JD (2017) The skin microbiome of cohabiting couples. mSystems 2 (4)Google Scholar
  33. 33.
    Wyatt RG, Mata LJ (1969) Bacteria in colostrum and milk of Guatemalan Indian women. J Trop Pediatr 15(4):159–162CrossRefPubMedGoogle Scholar
  34. 34.
    Eidelman AI, Szilagyi G (1979) Patterns of bacterial colonization of human milk. Obstet Gynecol 53:550–552PubMedGoogle Scholar
  35. 35.
    Serafini ÁB, André MCDPB., Rodrigues MAV, Kipnis A, Carvalho CO, Campos MRH et al (2003) Qualidade microbiológica de leite humano obtido em banco de leite. Rev Saúde Pública 37:775–779CrossRefPubMedGoogle Scholar
  36. 36.
    Martín R, Jiménez E, Heilig H, Fernández L, Marín ML, Zoetendal EG et al (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75:965–969.  https://doi.org/10.1128/AEM.02063-08 CrossRefPubMedGoogle Scholar
  37. 37.
    Martín V, Maldonado-Barragán A, Moles L, Rodriguez-Banõs M, del Campo R, Fernández L et al (2012) Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 28:36–44.  https://doi.org/10.1177/0890334411424729 CrossRefPubMedGoogle Scholar
  38. 38.
    Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C (2014) Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 16(9):2891–2904.  https://doi.org/10.1111/1462-2920.12238 CrossRefPubMedGoogle Scholar
  39. 39.
    Rodríguez JM, Fernández L (2017) Infectious mastitis during lactation: a mammary dysbiosis model in McGuire M. In: McGuire M, Bode L (eds) Prebiotics and probiotics in human milk, 2nd edn. Academic Press, San Diego, pp 401–428CrossRefGoogle Scholar
  40. 40.
    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87.  https://doi.org/10.1186/s12915-014-0087-z
  41. 41.
    Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ (2016) Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog 8:24.  https://doi.org/10.1186/s13099-016-0103-7
  42. 42.
    Patel SH, Vaidya YH, Joshi CG, Kunjadia AP (2016) Culture-dependent assessment of bacterial diversity from human milk with lactational mastitis. Comp Clin Path 25:437–443.  https://doi.org/10.1007/s00580-015-2205-x CrossRefGoogle Scholar
  43. 43.
    Marín M, Arroyo R, Espinosa-Martos I, Fernández L, Rodríguez JM (2017) Identification of emerging human mastitis pathogens by MALDI-TOF and assessment of their antibiotic resistance patterns. Front Microbiol 8:1258.  https://doi.org/10.3389/fmicb.2017.01258 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Delgado S, Arroyo R, Martín R, Rodríguez JM (2008) PCR-DGGE assessment of the bacterial diversity of breast milk in women with lactational infectious mastitis. BMC Infect Dis 8:51.  https://doi.org/10.1186/1471-2334-8-51
  45. 45.
    Delgado S, Arroyo R, Jiménez E, Marín ML, del Campo R, Fernández L et al (2009) Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: potential virulence traits and resistance to antibiotics. BMC Microbiol 9::82.  https://doi.org/10.1186/1471-2180-9-82 CrossRefGoogle Scholar
  46. 46.
    Alexandraki V, Kazou M, Angelopoulou A, Arena MP, Capozzi V, Russo P et al (2016) The microbiota of non-cow milk and products. In: Tsakalidou E, Papadimitriou K (eds) Non-bovine Milk and Milk Products, 1st edn. Academic Press, San Diego, pp 117–159Google Scholar
  47. 47.
    Martín R, Langa S, Reviriego C, Jimínez E, Marín ML, Xaus J et al (2003). Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143(6):754–758.  https://doi.org/10.1016/j.jpeds.2003.09.028
  48. 48.
    Albesharat R, Ehrmann MA, Korakli M, Yazaji S, Vogel RF (2011) Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst Appl Microbiol 34:148–155.  https://doi.org/10.1016/j.syapm.2010.12.001 CrossRefPubMedGoogle Scholar
  49. 49.
    Martín R, Heilig HGHJ., Zoetendal EG, Jiménez E, Fernández L, Smidt H et al (2007) Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol 158:31–37.  https://doi.org/10.1016/j.resmic.2006.11.004
  50. 50.
    Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M, Lagace J (2001) Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J Clin Microbiol 39:2584–2589.  https://doi.org/10.1128/jcm.39.7.2584-2589.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gavin A, Ostovar K (1977) Microbiological characterization of human milk. J Food Prot 40:614–616.  https://doi.org/10.4315/0362-028X-40.9.614 CrossRefGoogle Scholar
  52. 52.
    Martín R, Jiménez E, Olivares M, Marin ML, Fernández L, Xaus J et al (2006) Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother–child pair. Int J Food Microbiol 112:35–43.  https://doi.org/10.1016/j.ijfoodmicro.2006.06.011
  53. 53.
    Gonzalez R, Mandomando I, Fumado V, Sacoor C, Macete E, Alonso PL et al (2013) Breast milk and gut microbiota in African mothers and infants from an area of high HIV prevalence. PloS One 8:e80299.  https://doi.org/10.1371/journal.pone.0080299 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Thompson N, Pickler RH, Munro C, Shotwell J (1997). Contamination in expressed breast milk following breast cleansing. J Hum Lact 13:127–130.  https://doi.org/10.1177/089033449701300213 CrossRefPubMedGoogle Scholar
  55. 55.
    Cabrera-Rubio R, Mira-Pascual L, Mira À, Collado MC (2016) Impact of mode of delivery on the milk microbiota composition of healthy women. J Dev Orig Health Dis 7:54–60.  https://doi.org/10.1017/S2040174415001397 CrossRefPubMedGoogle Scholar
  56. 56.
    Delgado S, Garcia P, Fernández L, Jiménez E, Rodriguez-Banõs M, del Campo R et al (2011) Characterization of Staphylococcus aureus strains involved in human and bovine mastitis. FEMS Immunol Med Microbiol 62:225–235.  https://doi.org/10.1111/j.1574-695X.2011.00806.x CrossRefPubMedGoogle Scholar
  57. 57.
    Delgado S, Collado C, Fernández L, Rodríguez JM (2009) Bacterial analysis of breast milk: a tool to differentiate Raynaud’s phenomenon from infectious mastitis during lactation. Curr Microbiol 59:59–64.  https://doi.org/10.1007/s00284-009-9393-z CrossRefPubMedGoogle Scholar
  58. 58.
    Martín R, Langa S, Reviriego C, Jiménez E, Marín ML, Olivares M et al (2004) The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol 15 (3):121–127.  https://doi.org/10.1016/j.tifs.2003.09.010
  59. 59.
    Jost T, Lacroix C, Braegger C, Chassard C (2013) Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr 110(7):1253–1262.  https://doi.org/10.1017/s0007114513000597 CrossRefPubMedGoogle Scholar
  60. 60.
    Ward TL, Hosid S, Ioshikhes I, Altosaar I (2013) Human milk metagenome: a functional capacity analysis. BMC Microbiol 13:116.  https://doi.org/10.1186/1471-2180-13-116 PubMedPubMedCentralGoogle Scholar
  61. 61.
    Gueimonde M, Laitinen K, Salminen S, Isolauri E (2007) Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 92:64–66.  https://doi.org/10.1159/000100088 CrossRefPubMedGoogle Scholar
  62. 62.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324(5931):1190–1192.  https://doi.org/10.1126/science.1171700 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Otto M (2014) Staphylococcus epidermidis pathogenesis. Methods Mol Biol 1106:17–31.  https://doi.org/10.1007/978-1-62703-736-5_2 CrossRefPubMedGoogle Scholar
  64. 64.
    Sabel MS (2009) Infectious and inflammatory diseases of the breast in essentials of breast surgery. Mosby, Philadelphia, pp 83–90CrossRefGoogle Scholar
  65. 65.
    Dobinson HC, Anderson TP, Chambers ST, Doogue MP, Seaward L, Werno AM (2015) Antimicrobial treatment options for granulomatous mastitis caused by Corynebacterium species. J Clin Microbiol 53:2895–2899.  https://doi.org/10.1128/jcm.00760-15 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Korkut E, Akcay MN, Karadeniz E, Subasi ID, Gursan N (2015) Granulomatous mastitis: a ten-year experience at a university hospital. Eurasian J Med 47(3):165–173.  https://doi.org/10.5152/eurasianjmed.2015.118 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kiyak G, Dumlu EG, Kilinc I, Tokaç M, Akbaba S, Gurer A et al (2014) Management of idiopathic granulomatous mastitis: dilemmas in diagnosis and treatment. BMC Surg 14(1):66.  https://doi.org/10.1186/1471-2482-14-66 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Taylor GB, Paviour SD, Musaad S, Jones WO, Holland DJ (2003) A clinicopathological review of 34 cases of inflammatory breast disease showing an association between corynebacteria infection and granulomatous mastitis. Pathology 35:109–119PubMedGoogle Scholar
  69. 69.
    Say B, Dizdar EA, Degirmencioglu H, Uras N, Sari FN, Oguz S et al (2016) The effect of lactational mastitis on the macronutrient content of breast milk. Early Hum Dev 98:7–9.  https://doi.org/10.1016/j.earlhumdev.2016.03.009 CrossRefPubMedGoogle Scholar
  70. 70.
    Prentice A, Prentice AM, Lamb WH (1985) Mastitis in rural Gambian mothers and the protection of the breast by milk antimicrobial factors. Trans R Soc Trop Med Hyg 79:90–95CrossRefPubMedGoogle Scholar
  71. 71.
    Nommsen LA, Lovelady CA, Heinig MJ, Lonnerdal B, Dewey KG (1991) Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 months of lactation: the DARLING study. Am J Clin Nutr 53:457–465CrossRefPubMedGoogle Scholar
  72. 72.
    Le Roux Y, Laurent F, Moussaoui F (2003) Polymorphonuclear proteolytic activity and milk composition change. Vet Res 34:629–645.  https://doi.org/10.1051/vetres:2003021 CrossRefPubMedGoogle Scholar
  73. 73.
    Perez M, Ladero V, Redruello B, Del Rio B, Fernández L, Rodríguez JM et al (2016) Mastitis modifies the biogenic amines profile in human milk, with significant changes in the presence of histamine, putrescine and spermine. PLoS One 11:e0162426.  https://doi.org/10.1371/journal.pone.0162426 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Molec Life Sci 58(2):244–258.  https://doi.org/10.1007/pl00000852 CrossRefPubMedGoogle Scholar
  75. 75.
    Chanphai P, Thomas TJ, Tajmir-Riahi HA (2016) Conjugation of biogenic and synthetic polyamines with serum proteins: a comprehensive review. Int J Biol Macromo. 92:515–522.  https://doi.org/10.1016/j.ijbiomac.2016.07.049 CrossRefGoogle Scholar
  76. 76.
    Jahanfar S, Ng CJ, Teng CL (2013) Antibiotics for mastitis in breastfeeding women. Cochrane Database Syst Rev 2:CD005458.  https://doi.org/10.1002/14651858.CD005458.pub3 Google Scholar
  77. 77.
    Arroyo R, Martín V, Maldonado A, Jiménez E, Fernández L, Rodríguez JM (2010) Treatment of infectious mastitis during lactation: antibiotics versus oral administration of lactobacilli isolated from breast milk. Clin Infect Dis 50:1551–1558.  https://doi.org/10.1086/652763 CrossRefPubMedGoogle Scholar
  78. 78.
    Fernández L, Cardenas N, Arroyo R, Manzano S, Jiménez E, Martín V et al (2016) Prevention of infectious mastitis by oral administration of Lactobacillus salivarius PS2 during late pregnancy. Clin Infect Dis 62:568–573.  https://doi.org/10.1093/cid/civ974 CrossRefPubMedGoogle Scholar
  79. 79.
    Espinosa-Martos I, Jiménez E, de Andrés J, Rodríguez-Alcalá LM, Tavárez S, Manzano S et al (2016) Milk and blood biomarkers associated to the clinical efficacy of a probiotic for the treatment of infectious mastitis. Benef Microbes 7(3):305–318.  https://doi.org/10.3920/bm2015.0134 CrossRefPubMedGoogle Scholar
  80. 80.
    Fernández L, Delgado S, Herrero H, Maldonado A, Rodríguez JM (2008) The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation. J Hum Lact 24:311–316.  https://doi.org/10.1177/0890334408317435 CrossRefPubMedGoogle Scholar
  81. 81.
    Devereux WP (1969) Acute puerperal mastitis. Am J Obstet Gynecol 108:78–81.  https://doi.org/10.1016/0002-9378(70)90208-5 CrossRefGoogle Scholar
  82. 82.
    Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG et al (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451.  https://doi.org/10.1038/nbt1078 CrossRefPubMedGoogle Scholar
  83. 83.
    Schoenfeld EM, McKay MP (2010) Mastitis and methicillin-resistant Staphylococcus aureus (MRSA): the calm before the storm? J Emerg Med 38:e31–34.  https://doi.org/10.1016/j.jemermed.2008.11.021 CrossRefGoogle Scholar
  84. 84.
    Reddy P, Qi C, Zembower T, Noskin GA, Bolon M (2007) Postpartum mastitis and community-acquired methicillin-resistant Staphylococcus aureus. Emerg Infect Dis 13::298–301.  https://doi.org/10.3201/eid1302.060989 CrossRefGoogle Scholar
  85. 85.
    Joffe TH, Simpson NA (2009) Cesarean section and risk of asthma. The role of intrapartum antibiotics: a missing piece? J Pediatr 154:154.  https://doi.org/10.1016/j.jpeds.2008.08.039
  86. 86.
    Willing BP, Vacharaksa A, Croxen M, Thanachayanont T, Finlay BB (2011) Altering host resistance to infections through microbial transplantation. PLOS One 6:e26988.  https://doi.org/10.1371/journal.pone.0026988 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG (2015) The infant microbiome development: mom matters. Trends Mol Med 21:109–117.  https://doi.org/10.1016/j.molmed.2014.12.002 CrossRefPubMedGoogle Scholar
  88. 88.
    Arvola T, Ruuska T, Keränen J, Hyöty H, Salminen S, Isolauri E (2006) Rectal bleeding in infancy: clinical, allergological, and microbiological examination. Pediatrics 117:e760.  https://doi.org/10.1542/peds.2005-1069
  89. 89.
    de Weerth C, Fuentes S, Puylaert P, de Vos WM (2013) Intestinal microbiota of infants with colic: development and specific signatures. Pediatrics 131:e550–e558.  https://doi.org/10.1542/peds.2012-1449 CrossRefPubMedGoogle Scholar
  90. 90.
    Kummeling I, Stelma FF, Dagnelie PC, Snijders BEP, Penders J, Huber M et al (2007) Early life exposure to antibiotics and the subsequent development of eczema, wheeze and allergic sensitization in the first 2 years of life: the KOALA birth cohort study. Pediatrics 119:e225.  https://doi.org/10.1542/peds.2006-0896 CrossRefPubMedGoogle Scholar
  91. 91.
    FAO/WHO (2001); Report of joint FAO/WHO expert consultation on the health and nutritional properties of powder milk with live lactic acid bacteria. http://www.fao.org/3/a-a0512e.pdf
  92. 92.
    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al (2014) Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514.  https://doi.org/10.1038/nrgastro.2014.66 CrossRefPubMedGoogle Scholar
  93. 93.
    Pacheco AR, Barile D, Underwood MA, Mills DA (2015) The impact of the milk glycobiome on the neonate gut microbiota. Annu Rev Anim Biosci 3:419–445.  https://doi.org/10.1146/annurev-animal-022114-111112 CrossRefPubMedGoogle Scholar
  94. 94.
    Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R et al (2013) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69:1–10.  https://doi.org/10.1016/j.phrs.2012.09.001 CrossRefPubMedGoogle Scholar
  95. 95.
    Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788.  https://doi.org/10.1038/nrmicro1273 CrossRefPubMedGoogle Scholar
  96. 96.
    Beasley SS, Saris PE (2004) Nisin-producing Lactococcus lactis strains isolated from human milk. Appl Environ Microbiol 70:5051–5053.  https://doi.org/10.1128/aem.70.8.5051-5053.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Crispie F, Twomey D, Flynn J, Hill C, Ross P, Meaney W (2005) The lantibiotic lacticin 3147 produced in a milk-based medium improves the efficacy of a bismuth-based teat seal in cattle deliberately infected with Staphylococcus aureus. J Dairy Res 72:159–167.  https://doi.org/10.1017/S0022029905000816 CrossRefPubMedGoogle Scholar
  98. 98.
    Klostermann K, Crispie F, Flynn J, Meaney WJ, Ross PR, Hill C (2010) Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis. J Dairy Res 77:231–238.  https://doi.org/10.1017/s0022029909990239 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.APC Microbiome IrelandUniversity College CorkCorkIreland
  2. 2.School of MicrobiologyUniversity College CorkCorkIreland
  3. 3.Department of NeonatologyCork University Maternity HospitalCorkIreland
  4. 4.Food BiosciencesTeagasc Food Research CentreFermoyIreland

Personalised recommendations