Advertisement

Medical Microbiology and Immunology

, Volume 205, Issue 5, pp 471–483 | Cite as

Analysis of an echovirus 18 outbreak in Thuringia, Germany: insights into the molecular epidemiology and evolution of several enterovirus species B members

  • Andi KrumbholzEmail author
  • Renate Egerer
  • Heike Braun
  • Michaela Schmidtke
  • Dagmar Rimek
  • Claudia Kroh
  • Bert Hennig
  • Marco Groth
  • Andreas Sauerbrei
  • Roland Zell
Original Investigation

Abstract

In October and November 2010, six children and one woman were presented with symptoms of aseptic meningitis in Jena, Thuringia, Germany. Enterovirus RNA was detected in the cerebrospinal fluid of all patients by RT-PCR, and preliminary molecular typing revealed echovirus 18 (E-18) as causative agent. Virus isolates were obtained from stool samples of three patients and several contact persons. Again, most isolates were typed as E-18. In addition, coxsackievirus B5 (CV-B5) and echovirus 25 (E-25) were found to co-circulate. As only few complete E-18 sequences are available in GenBank, the entire genomes of these isolates were determined using direct RNA-sequencing technology. We did not find evidence for recombination between E-18, E-25 or CV-B5 during the outbreak. Viral protein 1 gene sequences and the cognate 3D polymerase gene sequences of each isolate and GenBank sequences were analysed in order to define type-specific recombination groups (recogroups).

Keywords

Enterovirus Meningitis RNA-sequencing Molecular epidemiology Lineages Recogroups Recombination Germany 

Notes

Acknowledgments

The author’s cordially acknowledge the kind support obtained by Professor Eberhard Straube (Institute of Medical Microbiology, Jena), Professor Peter Wutzler (Institute of Virology and Antiviral Therapy, Jena), Dr. Ina Werner, Beate von Frommannshausen, Dr. Rolf Bergmann (all TLV, Bad Langensalza) and Professor Helmut Fickenscher (Institute of Infection Medicine, Kiel) for this study. Typing of EV strains isolated at the TLV was performed by the German National Reference Laboratory for Poliomyelitis and Enteroviruses at the Robert Koch Institute. Thus, authors would like to thank Dr. Sabine Diedrich and colleagues for their kind support. The authors are also grateful to all patients and patient’s families as well as to their nurseries and primary schools for providing additional samples and access to epidemiological data.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

430_2016_464_MOESM1_ESM.pdf (100 kb)
Supplementary Figure 1: Detailed 3Dpol tree based on 318 sequences. Available sequence data of 63 Enterovirus B types were included. GenBank accession numbers, strain designations and year of sampling are presented. Colour code: green, E-18; blue, CV-B5; red, E-25. Coloured boxed indicate the recogroup numbers of the respective type. Boxed 3D sequence indicates E-25 strain with lacking cognate VP1 sequence; this indicates the existence of additional E-25 recogroup. Scale bar indicates substitutions per site (PDF 100 kb)
430_2016_464_MOESM2_ESM.pdf (115 kb)
Supplementary Figure 2: Detailed CV-B5 VP1 tree based on 381 sequences. Branch lengths indicate node ages. The sequences of the nine proposed recogroups are highlighted in blue, and the respective recogroup is indicated by a boxed number. GenBank accession numbers, strain designations and year of sampling are presented. Relevant amino acid exchanges are indicated at the branches. Scale bar indicates years (PDF 115 kb)

References

  1. 1.
    Rotbart HA (1995) Meninigitis and encephalitis. In: Rotbart HA (ed) Human Enterovirus Infections. American Society for Microbiology Press, Washington, pp 271–289CrossRefGoogle Scholar
  2. 2.
    Irani DN (2008) Aseptic meningitis and viral myelitis. Neurol Clin 26(3):635–655. doi: 10.1016/j.ncl.2008.03.003 (vii–viii) PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    RKI (2010) Bundesweite Enterovirus-Surveillance im Rahmen der Polioeradikation: Ergebnisse aus den ersten vier Projektjahren. Robert Koch Inst Epidemiol Bull 1:2–4Google Scholar
  4. 4.
    Harvala H, Calvert J, Van Nguyen D, Clasper L, Gadsby N, Molyneaux P, Templeton K, McWilliams Leitch C, Simmonds P (2014) Comparison of diagnostic clinical samples and environmental sampling for enterovirus and parechovirus surveillance in Scotland, 2010 to 2012. Euro Surveill 19(15):14–22CrossRefGoogle Scholar
  5. 5.
    Oberste MS, Maher K, Kilpatrick DR, Flemister MR, Brown BA, Pallansch MA (1999) Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol 37(5):1288–1293PubMedPubMedCentralGoogle Scholar
  6. 6.
    Oberste MS, Maher K, Kilpatrick DR, Pallansch MA (1999) Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73(3):1941–1948PubMedPubMedCentralGoogle Scholar
  7. 7.
    Eichenwald HF, Ababio A, Arky AM, Hartman AP (1958) Epidemic diarrhea in premature and older infants caused by ECHO virus type 18. J Am Med Assoc 166(13):1563–1566PubMedCrossRefGoogle Scholar
  8. 8.
    Ramos-Alvarez M, Sabin AB (1958) Enteropathogenic viruses and bacteria; role in summer diarrheal diseases of infancy and early childhood. J Am Med Assoc 167(2):147–156PubMedCrossRefGoogle Scholar
  9. 9.
    Wigand R, Sabin AB (1962) Antigenic purity and plaque properties of the prototype strains of ECHO virus types 7 to 11, and 17 and 18. Arch Ges Virusforsch 11:708–717PubMedCrossRefGoogle Scholar
  10. 10.
    Ramos-Alvarez M (1957) Cytopathogenic enteric viruses associated with undifferentiated diarrheal syndromes in early childhood. Ann NY Acad Sci 67(8):326–331CrossRefGoogle Scholar
  11. 11.
    Anonymous (1957) The enteroviruses; committee on the enteroviruses, national foundation for infantile paralysis. Am J Public Health N 47(12):1556–1566CrossRefGoogle Scholar
  12. 12.
    Kennett ML, Ellis AW, Lewis FA, Gust ID (1972) An epidemic associated with echovirus type 18. J Hyg (Lond) 70(2):325–334CrossRefGoogle Scholar
  13. 13.
    Wilfert CM, Lauer BA, Cohen M, Costenbader ML, Myers E (1975) An epidemic of echovirus 18 meningitis. J Infect Dis 131(1):75–78PubMedCrossRefGoogle Scholar
  14. 14.
    Maus MV, Posencheg MA, Geddes K, Elkan M, Penaranda S, Oberste MS, Hodinka RL (2008) Detection of echovirus 18 in human breast milk. J Clin Microbiol 46(3):1137–1140. doi: 10.1128/JCM.01991-07 PubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lefterova MI, Rivetta C, George TI, Pinsky BA (2013) Severe hepatitis associated with an echovirus 18 infection in an immune-compromised adult. J Clin Microbiol 51(2):684–687. doi: 10.1128/JCM.02405-12 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Muehlenbachs A, Bhatnagar J, Zaki SR (2015) Tissue tropism, pathology and pathogenesis of enterovirus infection. J Pathol 235(2):217–228. doi: 10.1002/path.4438 PubMedCrossRefGoogle Scholar
  17. 17.
    Brunel D, Jacques J, Motte J, Andreoletti L (2007) Fatal echovirus 18 leukoencephalitis in a child. J Clin Microbiol 45(6):2068–2071. doi: 10.1128/JCM.00320-07 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kusuhara K, Saito M, Sasaki Y, Hikino S, Taguchi T, Suita S, Hayashi J, Wakatsuki K, Hara T (2008) An echovirus type 18 outbreak in a neonatal intensive care unit. Eur J Pediatr 167(5):587–589. doi: 10.1007/s00431-007-0516-x PubMedCrossRefGoogle Scholar
  19. 19.
    Khetsuriani N, Lamonte-Fowlkes A, Oberste S, Pallansch MA (2006) Enterovirus surveillance—United States, 1970–2005. MMWR Surveill Summ 55(8):1–20PubMedGoogle Scholar
  20. 20.
    RKI (2013) Häufungen von Echovirus-30-bedingten Meningitiden 2013. Robert Koch Inst Epidemiol Bull 40:405–406Google Scholar
  21. 21.
    Klement C, Kissova R, Lengyelova V, Stipalova D, Sobotova Z, Galama JM, Bopegamage S (2013) Human enterovirus surveillance in the Slovak Republic from 2001 to 2011. Epidemiol Infect 141(12):2658–2662. doi: 10.1017/S0950268813000563 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fischer TK, Nielsen AY, Sydenham TV, Andersen PH, Andersen B, Midgley SE (2014) Emergence of enterovirus 71 C4a in Denmark, 2009 to 2013. Euro Surveill 19(38):5–10CrossRefGoogle Scholar
  23. 23.
    Janes VA, Minnaar R, Koen G, van Eijk H, Dijkman-de Haan K, Pajkrt D, Wolthers KC, Benschop KS (2014) Presence of human non-polio enterovirus and parechovirus genotypes in an Amsterdam hospital in 2007 to 2011 compared to national and international published surveillance data: a comprehensive review. Euro Surveill 19(46):15–23CrossRefGoogle Scholar
  24. 24.
    Diedrich S, Schreier E (2001) Aseptic meningitis in Germany associated with echovirus type 13. BMC Infect Dis 1:14PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Simmonds P, Welch J (2006) Frequency and dynamics of recombination within different species of human enteroviruses. J Virol 80(1):483–493. doi: 10.1128/JVI.80.1.483-493.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lukashev AN (2010) Recombination among picornaviruses. Rev Med Virol 20(5):327–337. doi: 10.1002/rmv.660 PubMedCrossRefGoogle Scholar
  27. 27.
    Kirkegaard K, Baltimore D (1986) The mechanism of RNA recombination in poliovirus. Cell 47(3):433–443PubMedCrossRefGoogle Scholar
  28. 28.
    King AM (1988) Preferred sites of recombination in poliovirus RNA: an analysis of 40 intertypic cross-over sequences. Nucleic Acids Res 16(24):11705–11723PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    McWilliam Leitch EC, Bendig J, Cabrerizo M, Cardosa J, Hyypia T, Ivanova OE, Kelly A, Kroes AC, Lukashev A, MacAdam A, McMinn P, Roivainen M, Trallero G, Evans DJ, Simmonds P (2009) Transmission networks and population turnover of echovirus 30. J Virol 83(5):2109–2118. doi: 10.1128/JVI.02109-08 PubMedCrossRefGoogle Scholar
  30. 30.
    McWilliam Leitch EC, Cabrerizo M, Cardosa J, Harvala H, Ivanova OE, Kroes AC, Lukashev A, Muir P, Odoom J, Roivainen M, Susi P, Trallero G, Evans DJ, Simmonds P (2010) Evolutionary dynamics and temporal/geographical correlates of recombination in the human enterovirus echovirus types 9, 11, and 30. J Virol 84(18):9292–9300. doi: 10.1128/JVI.00783-10 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lukashev AN, Shumilina EY, Belalov IS, Ivanova OE, Eremeeva TP, Reznik VI, Trotsenko OE, Drexler JF, Drosten C (2014) Recombination strategies and evolutionary dynamics of the human enterovirus a global gene pool. J Gen Virol 95(Pt 4):868–873. doi: 10.1099/vir.0.060004-0 PubMedCrossRefGoogle Scholar
  32. 32.
    Puchhammer-Stockl E, Popow-Kraupp T, Heinz FX, Mandl CW, Kunz C (1990) Establishment of PCR for the early diagnosis of herpes simplex encephalitis. J Med Virol 32(2):77–82PubMedCrossRefGoogle Scholar
  33. 33.
    Sauerbrei A, Eichhorn U, Schacke M, Wutzler P (1999) Laboratory diagnosis of herpes zoster. J Clin Virol 14(1):31–36PubMedCrossRefGoogle Scholar
  34. 34.
    Prosch S, Kimel V, Dawydowa I, Kruger DH (1992) Monitoring of patients for cytomegalovirus after organ transplantation by centrifugation culture and PCR. J Med Virol 38(4):246–251PubMedCrossRefGoogle Scholar
  35. 35.
    Nairn C, Clements GB (1999) A study of enterovirus isolations in Glasgow from 1977 to 1997. J Med Virol 58(3):304–312. doi: 10.1002/(SICI)1096-9071(199907)58:3<304:AID-JMV18>3.0.CO;2-U PubMedCrossRefGoogle Scholar
  36. 36.
    Nix WA, Oberste MS, Pallansch MA (2006) Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol 44(8):2698–2704. doi: 10.1128/JCM.00542-06 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Van Doornum GJ, De Jong JC (1998) Rapid shell vial culture technique for detection of enteroviruses and adenoviruses in fecal specimens: comparison with conventional virus isolation method. J Clin Microbiol 36(10):2865–2868PubMedPubMedCentralGoogle Scholar
  38. 38.
    Leland DS, Ginocchio CC (2007) Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev 20(1):49–78. doi: 10.1128/CMR.00002-06 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Terletskaia-Ladwig E, Meier S, Hahn R, Leinmuller M, Schneider F, Enders M (2008) A convenient rapid culture assay for the detection of enteroviruses in clinical samples: comparison with conventional cell culture and RT-PCR. J Med Microbiol 57(Pt 8):1000–1006. doi: 10.1099/jmm.0.47799-0 PubMedCrossRefGoogle Scholar
  40. 40.
    Pusch D, Oh DY, Wolf S, Dumke R, Schroter-Bobsin U, Hohne M, Roske I, Schreier E (2005) Detection of enteric viruses and bacterial indicators in German environmental waters. Arch Virol 150(5):929–947. doi: 10.1007/s00705-004-0467-8 PubMedCrossRefGoogle Scholar
  41. 41.
    Lange J, Groth M, Schlegel M, Krumbholz A, Wieczorek K, Ulrich R, Koppen S, Schulz K, Appl D, Selbitz HJ, Sauerbrei A, Platzer M, Zell R, Durrwald R (2013) Reassortants of the pandemic (H1N1) 2009 virus and establishment of a novel porcine H1N2 influenza virus, lineage in Germany. Vet Microbiol 167(3–4):345–356. doi: 10.1016/j.vetmic.2013.09.024 PubMedCrossRefGoogle Scholar
  42. 42.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973. doi: 10.1093/molbev/mss075 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574PubMedCrossRefGoogle Scholar
  45. 45.
    Lagercrantz M, Hugo H, Sterner G (1973) Spread of echovirus type 18 infections within families. Scand J Infect Dis 5(4):249–252PubMedCrossRefGoogle Scholar
  46. 46.
    Tsai HP, Huang SW, Wu FL, Kuo PH, Wang SM, Liu CC, Su IJ, Wang JR (2011) An echovirus 18-associated outbreak of aseptic meningitis in Taiwan: epidemiology and diagnostic and genetic aspects. J Med Microbiol 60(Pt 9):1360–1365. doi: 10.1099/jmm.0.027698-0 PubMedCrossRefGoogle Scholar
  47. 47.
    Turabelidze G, Lin M, Butler C, Fick F, Russo T (2009) Outbreak of echovirus 18 meningitis in a rural Missouri community. Mo Med 106(6):420–424PubMedGoogle Scholar
  48. 48.
    Wang SM, Ho TS, Shen CF, Wang JR, Liu CC (2011) Echovirus 18 meningitis in southern Taiwan. Pediatr Infect Dis J 30(3):259–260. doi: 10.1097/INF.0b013e3181f7cb69 PubMedCrossRefGoogle Scholar
  49. 49.
    McLaughlin JB, Gessner BD, Lynn TV, Funk EA, Middaugh JP (2004) Association of regulatory issues with an echovirus 18 meningitis outbreak at a children’s summer camp in Alaska. Pediatr Infect Dis J 23(9):875–877PubMedCrossRefGoogle Scholar
  50. 50.
    Logan SA, MacMahon E (2008) Viral meningitis. BMJ 336(7634):36–40. doi: 10.1136/bmj.39409.673657.AE PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chadwick DR (2005) Viral meningitis. Br Med Bull 75–76:1–14. doi: 10.1093/bmb/ldh057 PubMedGoogle Scholar
  52. 52.
    Tapparel C, Siegrist F, Petty TJ, Kaiser L (2013) Picornavirus and enterovirus diversity with associated human diseases. Infect Gen Evol 14:282–293. doi: 10.1016/j.meegid.2012.10.016 CrossRefGoogle Scholar
  53. 53.
    Witso E, Palacios G, Cinek O, Stene LC, Grinde B, Janowitz D, Lipkin WI, Ronningen KS (2006) High prevalence of human enterovirus a infections in natural circulation of human enteroviruses. J Clin Microbiol 44(11):4095–4100. doi: 10.1128/JCM.00653-06 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Oberste MS, Maher K, Flemister MR, Marchetti G, Kilpatrick DR, Pallansch MA (2000) Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol 38(3):1170–1174PubMedPubMedCentralGoogle Scholar
  55. 55.
    Oberste M, Schnurr D, Maher K, al-Busaidy S, Pallansch M (2001) Molecular identification of new picornaviruses and characterization of a proposed enterovirus 73 serotype. J Gen Virol 82(Pt 2):409–416. doi: 10.1099/0022-1317-82-2-409 PubMedCrossRefGoogle Scholar
  56. 56.
    Oberste MS, Nix WA, Maher K, Pallansch MA (2003) Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J Clin Virol 26(3):375–377PubMedCrossRefGoogle Scholar
  57. 57.
    Hyypia T, Hovi T, Knowles NJ, Stanway G (1997) Classification of enteroviruses based on molecular and biological properties. J Gen Virol 78(Pt 1):1–11. doi: 10.1099/0022-1317-78-1-1 PubMedCrossRefGoogle Scholar
  58. 58.
    Poyry T, Kinnunen L, Hyypia T, Brown B, Horsnell C, Hovi T, Stanway G (1996) Genetic and phylogenetic clustering of enteroviruses. J Gen Virol 77(Pt 8):1699–1717. doi: 10.1099/0022-1317-77-8-1699 PubMedCrossRefGoogle Scholar
  59. 59.
    Volle R, Bailly JL, Mirand A, Pereira B, Marque-Juillet S, Chambon M, Regagnon C, Brebion A, Henquell C, Peigue-Lafeuille H, Archimbaud C (2014) Variations in cerebrospinal fluid viral loads among enterovirus genotypes in patients hospitalized with laboratory-confirmed meningitis due to enterovirus. J Infect Dis 210(4):576–584. doi: 10.1093/infdis/jiu178 PubMedCrossRefGoogle Scholar
  60. 60.
    Gullberg M, Tolf C, Jonsson N, Mulders MN, Savolainen-Kopra C, Hovi T, Van Ranst M, Lemey P, Hafenstein S, Lindberg AM (2010) Characterization of a putative ancestor of coxsackievirus B5. J Virol 84(19):9695–9708. doi: 10.1128/JVI.00071-10 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Andersson P, Edman K, Lindberg AM (2002) Molecular analysis of the echovirus 18 prototype: evidence of interserotypic recombination with echovirus 9. Virus Res 85(1):71–83PubMedCrossRefGoogle Scholar
  62. 62.
    Oberste MS, Maher K, Pallansch MA (2004) Evidence for frequent recombination within species human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. J Virol 78(2):855–867PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andi Krumbholz
    • 1
    • 2
    • 3
    • 8
    Email author
  • Renate Egerer
    • 2
    • 3
  • Heike Braun
    • 2
  • Michaela Schmidtke
    • 2
  • Dagmar Rimek
    • 4
  • Claudia Kroh
    • 5
  • Bert Hennig
    • 6
  • Marco Groth
    • 7
  • Andreas Sauerbrei
    • 2
  • Roland Zell
    • 2
  1. 1.Institute of Infection MedicineChristian-Albrecht University Kiel and University Medical Center Schleswig-HolsteinKielGermany
  2. 2.Institute of Virology and Antiviral TherapyJena University HospitalJenaGermany
  3. 3.Institute of Medical MicrobiologyJena University HospitalJenaGermany
  4. 4.Thuringian State Authority for Consumer Protection (TLV)Bad LangensalzaGermany
  5. 5.Public Health Authority, City Council of JenaJenaGermany
  6. 6.Department of PediatricsJena University HospitalJenaGermany
  7. 7.Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
  8. 8.Medical Laboratory Dr. Krause and colleagues MVZ GmbHKielGermany

Personalised recommendations