Advertisement

Brain structure and internalizing and externalizing behavior in typically developing children and adolescents

  • Quinn R. Andre
  • Bryce L. Geeraert
  • Catherine LebelEmail author
Original Article
  • 38 Downloads

Abstract

Mental health problems often emerge in adolescence and are associated with reduced gray matter thickness or volume in the prefrontal cortex (PFC) and limbic system and reduced fractional anisotropy (FA) and increased mean diffusivity (MD) of white matter linking these regions. However, few studies have investigated whether internalizing and externalizing behavior are associated with brain structure in children and adolescents without mental health disorders, which is important for understanding the progression of symptoms. 67 T1-weighted and diffusion tensor imaging datasets were obtained from 48 typically developing participants aged 6–16 years (37M/30F; 19 participants had two visits). Volume was calculated in the prefrontal and limbic structures, and diffusion parameters were assessed in limbic white matter. Linear mixed effects models were used to compute associations between brain structure and internalizing and externalizing behavior, assessed using the Behavioral Assessment System for Children (BASC-2) Parent Rating Scale. Internalizing behavior was positively associated with MD of the bilateral cingulum. Gender interactions were found in the cingulum, with stronger positive relationships between MD and internalizing behavior in females. Externalizing behavior was negatively associated with FA of the left cingulum, and the left uncinate fasciculus showed an age–behavior interaction. No relationships between behavior and brain volumes survived multiple comparison correction. These results show altered limbic white matter FA and MD related to sub-clinical internalizing and externalizing behavior and further our understanding of neurological markers that may underlie risk for future mental health disorders.

Keywords

Structural magnetic resonance imaging Diffusion tensor imaging (DTI) Mental health Internalizing Externalizing Pediatric neuroimaging 

Notes

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) (CL), NSERC CREATE International and Industrial Imaging Training (I3T) Program, Queen Elizabeth II Graduate Scholarship, and Alberta Children’s Hospital Research Institute (ACHRI) Graduate Scholarship (QA).

Compliance with ethical standards

Conflict of interest

CL’s spouse is an employee of General Electric Healthcare. The authors report no other biomedical financial interests or potential conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of Calgary Conjoint Health Research Ethics Board [REB13-1346] and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent and assent were obtained from all guardians and individual participants included in the study.

Supplementary material

429_2019_1973_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 kb)

References

  1. Abdul-Rahman MF, Qiu A, Sim K (2011) Regionally specific white matter disruptions of fornix and cingulum in schizophrenia. PLoS One.  https://doi.org/10.1371/journal.pone.0018652 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahmed SP, Bittencourt-Hewitt A, Sebastian CL (2015) Neurocognitive bases of emotion regulation development in adolescence. Dev Cogn Neurosci 15:11–25.  https://doi.org/10.1016/j.dcn.2015.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albaugh MD, Ducharme S, Karama S, Watts R, Lewis JD, Orr C et al (2017) Anxious/depressed symptoms are related to microstructural maturation of white matter in typically developing youths. Dev Psychopathol 29(3):751–758.  https://doi.org/10.1017/S0954579416000444 CrossRefPubMedGoogle Scholar
  4. Ali OM, Vandermeer MRJ, Sheikh HI, Joanisse MF, Hayden EP (2019) Girls’ internalizing symptoms and white matter tracts in Cortico-Limbic circuitry. NeuroImage Clin.  https://doi.org/10.1016/j.nicl.2018.101650 CrossRefGoogle Scholar
  5. Ameis SH, Ducharme S, Albaugh MD, Hudziak JJ, Botteron KN, Lepage C et al (2014) Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children. Biol Psychiat 75(1):65–72.  https://doi.org/10.1016/j.biopsych.2013.06.008 CrossRefPubMedGoogle Scholar
  6. Asato MR, Terwilliger R, Woo J, Luna B (2010) White matter development in adolescence: a DTI study. Cereb Cortex 20(9):2122–2131.  https://doi.org/10.1093/cercor/bhp282 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barnhill GP, Hagiwara T, Myles BS, Simpson RL, Brick ML, Griswold DE (2000) Parent, teacher, and self-report of problem and adaptive behaviors in children and adolescents with Asperger syndrome. Assess Effect Interv 25(2):147–167.  https://doi.org/10.1177/073724770002500205 CrossRefGoogle Scholar
  8. Basser PJ, Pierpoali C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. J Magn Reson (San Diego, Calif. 1997) 213(2):560–570.  https://doi.org/10.1016/j.jmr.2011.09.022 CrossRefGoogle Scholar
  9. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455.  https://doi.org/10.1002/nbm.782 CrossRefPubMedGoogle Scholar
  10. Boes AD, Tranel D, Anderson SW, Nopoulos P (2008) Right anterior cingulate: a neuroanatomical correlate of aggression and defiance in boys. Behav Neurosci 122(3):677–684.  https://doi.org/10.1037/0735-7044.122.3.677 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bubb EJ, Metzler-Baddeley C, Aggleton JP (2018) The cingulum bundle: anatomy, function, and dysfunction. Neurosci Biobehav Rev 92(May):104–127.  https://doi.org/10.1016/j.neubiorev.2018.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Caldwell JZK, Armstrong JM, Hanson JL, Sutterer MJ, Stodola DE, Koenigs M et al (2015) Preschool externalizing behavior predicts gender-specific variation in adolescent neural structure. PLoS One 10(2):1–17.  https://doi.org/10.1371/journal.pone.0117453 CrossRefGoogle Scholar
  13. Casey BJ, Getz S, Galvan A (2008) The adolescent brain. Dev Rev 28(1):62–77.  https://doi.org/10.1016/j.dr.2007.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Castellanos FX, Giedd JN, Berquin PC, Walter JM, Sharp W, Tran T et al (2001) Quantitative brain magnetic resonance imaging in girls with attention- deficit/hyperactivity disorder. Arch Gen Psychiatry 58(3):289–295CrossRefGoogle Scholar
  15. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9(2):179–194.  https://doi.org/10.1006/nimg.1998.0395 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Decety J, Yoder KJ, Lahey BB (2015) Sex differences in abnormal white matter development associated with conduct disorder in children. Psychiatry Res Neuroimaging 233(2):269–277.  https://doi.org/10.1016/j.pscychresns.2015.07.009 CrossRefGoogle Scholar
  17. Doyle A, Ostrander R, Skare S, Crosby R, August G (1997) Convergent and criterion-related validity of the behavior assessment system for children-parent rating scale. J Clin Child Psychol 26(3):276–284.  https://doi.org/10.1207/s15374424jccp2603 CrossRefPubMedGoogle Scholar
  18. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213(1–2):93–118.  https://doi.org/10.1007/s00429-008-0189-x CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ducharme S, Hudziak JJ, Botteron KN, Ganjavi H, Lepage C, Collins DL et al (2011) Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children. Biol Psychiat 70(3):283–290.  https://doi.org/10.1016/j.biopsych.2011.03.015 CrossRefPubMedGoogle Scholar
  20. Ducharme S, Albaugh MD, Hudziak JJ, Botteron KN, Nguyen TV, Truong C et al (2014) Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cereb Cortex 24(11):2941–2950.  https://doi.org/10.1093/cercor/bht151 CrossRefPubMedGoogle Scholar
  21. Eaton NR, Keyes KM, Krueger RF, Balsis S, Andrew E, Markon KE et al (2012) An invariant dimensional liability model of gender differences in mental disorder prevalence: evidence from a national sample. J Abnorm Psychol 121(1):282–288.  https://doi.org/10.1037/a0024780.An CrossRefPubMedGoogle Scholar
  22. Fanti KA, Henrich CC (2010) Trajectories of pure and co-occurring internalizing and externalizing problems from age 2 to age 12: findings from the national institute of child health and human development study of early child care. Dev Psychol 46(5):1159–1175.  https://doi.org/10.1037/a0020659 CrossRefPubMedGoogle Scholar
  23. Filipek PA, Semrud-Clikeman M, Steingrad R, Kennedy D, Biederman J (1997) Volumetric MRI analysis: comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 48(3):589–601CrossRefGoogle Scholar
  24. Gau SS, Tseng WL, Tseng WYI, Wu YH, Lo YC (2015) Association between microstructural integrity of frontostriatal tracts and school functioning: ADHD symptoms and executive function as mediators. Psychol Med 45(3):529–543.  https://doi.org/10.1017/S0033291714001664 CrossRefPubMedGoogle Scholar
  25. Geeraert BL, Lebel RM, Mah AC, Deoni SC, Alsop DC, Varma G, Lebel C (2018) A comparison of inhomogeneous magnetization transfer, myelin volume fraction, and diffusion tensor imaging measures in healthy children. NeuroImage 182:343–350.  https://doi.org/10.1016/j.neuroimage.2017.09.019 CrossRefPubMedGoogle Scholar
  26. Genc S, Seal ML, Dhollander T, Malpas CB, Hazell P, Silk TJ (2017) White matter alterations at pubertal onset. NeuroImage 156(May):286–292.  https://doi.org/10.1016/j.neuroimage.2017.05.017 CrossRefPubMedGoogle Scholar
  27. Giedd JN, Vaituzis AC, Hamburger SD, Lange N, Rajapakse JC, Kaysen D et al (1996) Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. J Comp Neurol 366(2):223–230.  https://doi.org/10.1002/(SICI)1096-9861(19960304)366:2%3c223:AID-CNE3%3e3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  28. Gilliom M, Shaw DS (2004) Codevelopment of externalizing and internalizing problems in early childhood. Dev Psychopathol 16(2):313–333.  https://doi.org/10.1017/S0954579404044530 CrossRefPubMedGoogle Scholar
  29. Goodwin R, Fergusson D, Horwood J (2004) Early anxious/withdrawn behaviours predict later internalising disorders. J Child Psychol Psychiatry 45(4):874–883.  https://doi.org/10.1111/j.1469-7610.2004.00279.x CrossRefPubMedGoogle Scholar
  30. Heng S, Song AW, Sim K (2010) White matter abnormalities in bipolar disorder: insights from diffusion tensor imaging studies. J Neural Transm 117(5):639–654.  https://doi.org/10.1007/s00702-010-0368-9 CrossRefPubMedGoogle Scholar
  31. Hofstra MB, Van Der Ende J, Verhulst FC (2002) Child and adolescent problems predict DSM-IV disorders in adulthood: a 14-year follow-up of a Dutch epidemiological sample. J Am Acad Child Adolesc Psychiatry 41(2):182–189.  https://doi.org/10.1097/00004583-200202000-00012 CrossRefPubMedGoogle Scholar
  32. Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LSJ et al (2017) Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4(4):310–319.  https://doi.org/10.1016/S2215-0366(17)30049-4 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C (2012) Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. NeuroImage 61(1):275–288.  https://doi.org/10.1016/j.neuroimage.2012.02.054 CrossRefPubMedGoogle Scholar
  34. Jeurissen B, Leemans A, Jones DK, Tournier JD, Sijbers J (2011) Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp 32(3):461–479.  https://doi.org/10.1002/hbm.21032 CrossRefPubMedGoogle Scholar
  35. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62(6):593–602.  https://doi.org/10.1001/archpsyc.62.6.593 CrossRefGoogle Scholar
  36. Kolko DJ, Kazdin AE (1993) Emotional/behavioral problems in clinic and nonclinic children: correspondence among child, parent and teacher reports. J Child Psychol Psychiatry 34(6):991–1006.  https://doi.org/10.1111/j.1469-7610.1993.tb01103.x CrossRefPubMedGoogle Scholar
  37. Koolschijn PCMP, van Ijzendoorn MH, Bakermans-Kranenburg MJ, Crone EA (2013) Hippocampal volume and internalizing behavior problems in adolescence. Eur Neuropsychopharmacol 23(7):622–628.  https://doi.org/10.1016/j.euroneuro.2012.07.001 CrossRefPubMedGoogle Scholar
  38. Larroza A, Moratal D, D’ocon Alcaniz V, Arana E (2014) Tractography of the uncinate fasciculus and the posterior cingulate fasciculus in patients with mild cognitive impairment and Alzheimer disease. Neurologia (Barcelona, Spain) 29(1):11–20.  https://doi.org/10.1016/j.nrl.2013.02.002 CrossRefGoogle Scholar
  39. Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31(30):10937–10947.  https://doi.org/10.1523/JNEUROSCI.5302-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055.  https://doi.org/10.1016/j.neuroimage.2007.12.053 CrossRefPubMedGoogle Scholar
  41. Lee FS, Heimer H, Giedd JN, Lein ES, Sestan N, Weinberger DR, Casey BJ (2014) Adolescent mental health—opportunity and obligation: emerging neuroscience offers hope for treatments. Science 346(6209):547–549.  https://doi.org/10.1097/OGX.0000000000000256.Prenatal CrossRefPubMedPubMedCentralGoogle Scholar
  42. Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61(6):1336–1349.  https://doi.org/10.1002/mrm.21890 CrossRefPubMedGoogle Scholar
  43. Leemans A, Jeurissen B, Sijbers J, Jones D (2009) ExploreDTI : a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of International Society of Magnetic Resonance in Medicine, 3537, Hawaii, USAGoogle Scholar
  44. Lichenstein SD, Verstynen T, Forbes EE (2016) Adolescent brain development and depression: a case for the importance of connectivity of the anterior cingulate cortex. Neurosci Biobehav Rev 70:271–287.  https://doi.org/10.1016/j.neubiorev.2016.07.024 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Merikangas KR, Nakamura EF, Kessler RC (2009) Epidemiology of mental disorders in children and adolescents. Dialogues Clin Neurosci 11(1):7–20.  https://doi.org/10.1001/jamapediatrics.2013.192 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mincic AM (2015) Neuroanatomical correlates of negative emotionality-related traits: a systematic review and meta-analysis. Neuropsychologia 77:97–118.  https://doi.org/10.1016/j.neuropsychologia.2015.08.007 CrossRefPubMedGoogle Scholar
  47. Moffitt T (1993) Adolescence-limited and life-course-persistent antisocial behavior: a developmental taxonomy. Psychol Rev 100(4):674–701CrossRefGoogle Scholar
  48. Montigny C, Castellanos-Ryan N, Whelan R, Banaschewski T, Barker GJ, Büche C et al (2013) A phenotypic structure and neural correlates of compulsive behaviors in adolescents. PLoS One 8(11):1–13.  https://doi.org/10.1371/journal.pone.0080151 CrossRefGoogle Scholar
  49. Olson IR, Von Der Heide RJ, Alm KH, Vyas G (2015) Development of the uncinate fasciculus: implications for theory and developmental disorders. Dev Cogn Neurosci 14:50–61.  https://doi.org/10.1016/j.dcn.2015.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(DeceMBeR):947–958CrossRefGoogle Scholar
  51. Perrone D, Aelterman J, Pižurica A, Jeurissen B, Philips W, Leemans A (2015) The effect of Gibbs ringing artifacts on measures derived from diffusion MRI. NeuroImage 120:441–455.  https://doi.org/10.1016/j.neuroimage.2015.06.068 CrossRefPubMedGoogle Scholar
  52. Plaisier A, Pieterman K, Lequin MH, Govaert P, Heemskerk AM, Reiss IKM et al (2014) Choice of diffusion tensor estimation approach affects fiber tractography of the fornix in preterm brain. Am J Neuroradiol 35(6):1219–1225.  https://doi.org/10.3174/ajnr.A3830 CrossRefPubMedGoogle Scholar
  53. Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35(1):192–216.  https://doi.org/10.1038/npp.2009.104 CrossRefPubMedGoogle Scholar
  54. Reynolds CR, Kamphaus RW, Vannest KJ (2011) Behavior assessment system for children (BASC). In: Kreutzer JS, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology. Springer, New York, pp 366–371.  https://doi.org/10.1007/978-0-387-79948-3_1524 CrossRefGoogle Scholar
  55. Smetanin P, Stiff D, Briante C, Adair CE, Ahmad S, and Khan M (2011) The life and economic impact of major mental illnesses in Canada: 2011 to 2041. RiskAnalytica, on behalf of the Mental Health Commission of Canada 2011Google Scholar
  56. Roberts, A, Robbins, T, Weiskrantz, L (1998) The prefrontal cortex: executive and cognitive functions. Oxford University Press, Oxford.  https://doi.org/10.1093/acprof:oso/9780198524410.001.0001 CrossRefGoogle Scholar
  57. Sarkar S, Craig MC, Catani M, Dell’Acqua F, Fahy T, Deeley Q, Murphy DGM (2013) Frontotemporal white-matter microstructural abnormalities in adolescents with conduct disorder: a diffusion tensor imaging study. Psychol Med 43(2):401–411.  https://doi.org/10.1017/S003329171200116X CrossRefPubMedGoogle Scholar
  58. Seunarine KK, Clayden JD, Jentschke S, Muñoz M, Cooper JM, Chadwick MJ et al (2016) Sexual dimorphism in white matter developmental trajectories using tract-based spatial statistics. Brain Connect 6(1):37–47.  https://doi.org/10.1089/brain.2015.0340 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sexton CE, Mackay CE, Ebmeier KP (2009) A systematic review of diffusion tensor imaging studies in affective disorders. Biol Psychiat 66(9):814–823.  https://doi.org/10.1016/j.biopsych.2009.05.024 CrossRefPubMedGoogle Scholar
  60. Snyder HR, Hankin BL, Sandman CA, Head K, Davis EP (2017) Distinct patterns of reduced prefrontal and limbic gray matter volume in childhood general and internalizing psychopathology. Clin Psychol Sci 5(6):1001–1013.  https://doi.org/10.1177/2167702617714563 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tamnes CK, Østby Y, Fjell AM, Westlye T, Due-tønnessen P, Walhovd KB (2010) Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex 20:534–548.  https://doi.org/10.1093/cercor/bhp118 CrossRefPubMedGoogle Scholar
  62. Tax CMW, Otte WM, Viergever MA, Dijkhuizen RM, Leemans A (2015) REKINDLE: robust extraction of kurtosis INDices with linear estimation. Magn Reson Med 73(2):794–808.  https://doi.org/10.1002/mrm.25165 CrossRefPubMedGoogle Scholar
  63. Uematsu A, Matsui M, Tanaka C, Takahashi T, Noguchi K, Suzuki M, Nishijo H (2012) Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS One.  https://doi.org/10.1371/journal.pone.0046970 CrossRefPubMedPubMedCentralGoogle Scholar
  64. van der Plas EAA, Boes AD, Wemmie JA, Tranel D, Nopoulos P (2010) Amygdala volume correlates positively with fearfulness in normal healthy girls. Soc Cogn Affect Neurosci 5(4):424–431.  https://doi.org/10.1093/scan/nsq009 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Vaughn M, Riccio C, Hynd G, Hall J (2010) Diagnosing ADHD (predominantly inattentive and combine type subtypes): discriminant validity of the behaviour assessment system for children and the Achenbach parent and teaching rating scales. J Clin Child Psychol 26(4):349–357.  https://doi.org/10.1207/s15374424jccp2604 CrossRefGoogle Scholar
  66. Visser TAW, Ohan JL, Whittle S, Yucel M, Simmons JG, Allen NB (2013) Sex differences in structural brain asymmetry predict overt aggression in early adolescents. Soc Cogn Affect Neurosci 2014(9):553–560.  https://doi.org/10.1093/scan/nst013 CrossRefGoogle Scholar
  67. Vos SB, Tax CMW, Luijten PR, Ourselin S, Leemans A, Froeling M (2017) The importance of correcting for signal drift in diffusion MRI. Magn Reson Med 77(1):285–299.  https://doi.org/10.1002/mrm.26124 CrossRefPubMedGoogle Scholar
  68. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PCM, Mori S (2004) Fiber tract–based atlas of human white matter anatomy. Radiology 230(1):77–87.  https://doi.org/10.1148/radiol.2301021640 CrossRefPubMedGoogle Scholar
  69. Waller R, Dotterer HL, Murray L, Maxwell AM, Hyde LW (2017) White-matter tract abnormalities and antisocial behavior: a systematic review of diffusion tensor imaging studies across development. NeuroImage Clin 14:201–215.  https://doi.org/10.1016/j.nicl.2017.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  70. White T, Nelson M, Lim KO (2008) Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging 19(2):97–106.  https://doi.org/10.1097/RMR.0b013e3181809f1e CrossRefPubMedGoogle Scholar
  71. Yang Y, Raine A (2009) Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res Neuroimaging 174(2):81–88.  https://doi.org/10.1016/j.pscychresns.2009.03.012 CrossRefGoogle Scholar
  72. Yap MBH, Whittle S, Yücel M, Sheeber L (2008) Interaction of parenting experiences and brain structure in the prediction of depressive symptoms in adolescents. Arch Gen Psychiatry 65(12):1377–1385CrossRefGoogle Scholar
  73. Zahn-Waxler C, Shirtcliff EA, Marceau K (2008) Disorders of childhood and adolescence: gender and psychopathology. Annu Rev Clin Psychol 4:275–305.  https://doi.org/10.1146/annurev.clinpsy.3.022806.091358 CrossRefPubMedGoogle Scholar
  74. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4):1000–1016CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Medical Science Graduate ProgramUniversity of CalgaryCalgaryCanada
  2. 2.Biomedical Engineering Graduate ProgramUniversity of CalgaryCalgaryCanada
  3. 3.Department of RadiologyUniversity of CalgaryCalgaryCanada
  4. 4.Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryCanada
  5. 5.Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
  6. 6.Alberta Children’s HospitalCalgaryCanada

Personalised recommendations