Advertisement

Source-based morphometry: a decade of covarying structural brain patterns

  • Cota Navin GuptaEmail author
  • Jessica A. Turner
  • Vince D. Calhoun
Review
  • 73 Downloads

Abstract

In this paper, we review and discuss brain imaging studies which have used the source-based morphometry (SBM) approach over the past decade. SBM is a data-driven linear multivariate approach for decomposing structural brain imaging data into commonly covarying imaging components and subject-specific loading parameters. It is a well-established technique which has predominantly been used to study neuroanatomic differences between healthy controls and patients with neuropsychiatric diseases. We start by discussing the advantages of this technique over univariate analysis for imaging studies, followed by a discussion of results from recent studies which have successfully applied this methodology. We also present recent extensions of this framework including nonlinear SBM, biclustered independent component analysis (B-ICA) and conclude with the possible directions of work for future.

Keywords

Independent component analysis (ICA) Source-based morphometry (SBM) Multivariate analysis Voxel-based morphometry (VBM) Univariate analysis Nonlinear independent component analysis (NICE) Biclustered independent component analysis (B-ICA) 

Notes

Acknowledgments

This work was supported by NIH 1R01MH094524 to Drs. Turner and Calhoun, as well as P20GM103472, 1R01EB006841, R01EB005846 and NSF grant 1539067 to Dr. Calhoun. The first author acknowledges support from the Indian Institute of Technology Guwahati startup grant during this work.

Compliance with ethical statement

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This is a review article and human participants were not involved in this work.

References

  1. Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14(5):322–336.  https://doi.org/10.1038/nrn3465 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17(8):2859–2868.  https://doi.org/10.1523/JNEUROSCI.17-08-02859.1997 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arbabshirani MR, Plis S, Sui J, Calhoun VD (2016) Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage 145:137–165CrossRefGoogle Scholar
  4. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6):805–821CrossRefGoogle Scholar
  5. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851CrossRefGoogle Scholar
  6. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–48.  https://doi.org/10.1523/JNEUROSCI.1929-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bergsland N, Horakova D, Dwyer MG, Uher T, Vaneckova M, Tyblova M, Zivadinov R et al (2018) Gray matter atrophy patterns in multiple sclerosis: a 10-year source-based morphometry study. Neuroimage Clin 17:444–451CrossRefGoogle Scholar
  8. Calhoun VD, Adali T, Pearlson GD, Pekar J (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151CrossRefGoogle Scholar
  9. Calhoun VD, Liu J, Adalı T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1):S163–S172CrossRefGoogle Scholar
  10. Caprihan A, Abbott C, Yamamoto J, Pearlson G, Perrone-Bizzozero N, Sui J, Calhoun VD (2011) Source-based morphometry analysis of group differences in fractional anisotropy in schizophrenia. Brain Connectivity 1(2):133–145CrossRefGoogle Scholar
  11. Castro E, Gupta CN, Martínez-Ramón M, Calhoun VD, Arbabshirani MR, Turner J (2014) Identification of patterns of gray matter abnormalities in schizophrenia using source-based morphometry and bagging. Conf Proc IEEE Eng Med Biol Soc 2014:1513–1516.  https://doi.org/10.1109/EMBC.2014.6943889 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Castro E, Hjelm RD, Plis S, Dihn L, Turner JA, Calhoun VD (2016) Deep independence network analysis of structural brain imaging: application to schizophrenia. IEEE Trans Med Imaging 35(7):1729–1740.  https://doi.org/10.1109/TMI.2016.2527717 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen J, Liu J, Calhoun VD, Arias-Vasquez A, Zwiers MP, Gupta CN, Turner JA et al (2014) Exploration of scanning effects in multi-site structural MRI studies. J Neurosci Methods 230:37–50CrossRefGoogle Scholar
  14. Ciarochi JA, Calhoun VD, Lourens S, Long JD, Johnson HJ, Bockholt HJ, Turner JA et al (2016) Patterns of co-occurring gray matter concentration loss across the Huntington disease prodrome. Front Neurol 7:147CrossRefGoogle Scholar
  15. Comon P, Jutten C (2010) Handbook of blind source separation: independent component analysis and applications. Academic press, CambridgeGoogle Scholar
  16. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Changes in grey matter induced by training. Nature 427(6972):311–312.  https://doi.org/10.1038/427311a CrossRefPubMedGoogle Scholar
  17. Driemeyer J, Boyke J, Gaser C, Büchel C, May A (2008) Changes in gray matter induced by learning—revisited. PLoS One 3(7):e2669.  https://doi.org/10.1371/journal.pone.0002669 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Evans AC (2013) Networks of anatomical covariance. NeuroImage 80:489–504.  https://doi.org/10.1016/j.neuroimage.2013.05.054 CrossRefPubMedGoogle Scholar
  19. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878CrossRefGoogle Scholar
  20. Glover GH (2012) Spiral imaging in fMRI. NeuroImage 62(2):706–712.  https://doi.org/10.1016/j.neuroimage.2011.10.039 CrossRefPubMedGoogle Scholar
  21. Grecucci A, Rubicondo D, Siugzdaite R, Surian L, Job R (2016) Uncovering the social deficits in the autistic brain. A source-based morphometric study. Front Neurosci 10:388CrossRefGoogle Scholar
  22. Gupta CN, Calhoun VD, Rachakonda S, Chen J, Patel V, Liu J, Arias-Vasquez A et al (2015) Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophr Bull 41(5):1133–1142CrossRefGoogle Scholar
  23. Gupta CN, Castro E, Rachkonda S, van Erp TG, Potkin S, Ford JM, Greve DN et al (2017) Biclustered independent component analysis for complex biomarker and subtype identification from structural magnetic resonance images in schizophrenia. Front Psychiatry 8:179CrossRefGoogle Scholar
  24. Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337):123–129CrossRefGoogle Scholar
  25. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419.  https://doi.org/10.1093/cercor/bhl149 CrossRefGoogle Scholar
  26. He Y, Chen Z, Gong G, Evans A (2009) Neuronal networks in Alzheimer’s disease. Neuroscientist 15(4):333–350.  https://doi.org/10.1177/1073858409334423 CrossRefPubMedGoogle Scholar
  27. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430CrossRefGoogle Scholar
  28. Kiehl KA, Anderson NE, Aharoni E, Maurer JM, Harenski KA, Rao V, Decety J et al (2018) Age of gray matters: neuroprediction of recidivism. Neuroimage Clin 19:813–823CrossRefGoogle Scholar
  29. Kim T, Lee I, Lee T-W (2006) Independent vector analysis: definition and algorithms. 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, IEEE, pp 1393–1396Google Scholar
  30. Kim EY, Magnotta VA, Liu D, Johnson HJ (2014) Stable atlas-based mapped prior (STAMP) machine-learning segmentation for multicenter large-scale MRI data. Magn Reson Imaging 32(7):832–844CrossRefGoogle Scholar
  31. Koutsouleris N, Meisenzahl EM, Davatzikos C, Bottlender R, Frodl T, Scheuerecker J, Reiser M et al (2009) Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch Gen Psychiatry 66(7):700–712CrossRefGoogle Scholar
  32. Kubera KM, Sambataro F, Vasic N, Wolf ND, Frasch K, Hirjak D, Wolf RC et al (2014) Source-based morphometry of gray matter volume in patients with schizophrenia who have persistent auditory verbal hallucinations. Prog Neuropsychopharmacol Biol Psychiatry 50:102–109CrossRefGoogle Scholar
  33. Lee T-W (1998) Independent component analysis. In independent component analysis. Springer, Berlin, pp 27–66CrossRefGoogle Scholar
  34. Lerch JP, Worsley K, Shaw WP, Greenstein DK, Lenroot RK, Giedd J, Evans AC (2006) Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. NeuroImage 31(3):993–1003.  https://doi.org/10.1016/j.neuroimage.2006.01.042 CrossRefPubMedGoogle Scholar
  35. Li Y, Adalı T, Calhoun VD (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28(11):1251–1266CrossRefGoogle Scholar
  36. McKeown MJ, Sejnowski TJ (1998) Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp 6(5–6):368–372CrossRefGoogle Scholar
  37. Palaniyappan L, Mahmood J, Balain V, Mougin O, Gowland PA, Liddle PF (2015) Structural correlates of formal thought disorder in schizophrenia: an ultra-high field multivariate morphometry study. Schizophr Res 168(1):305–312CrossRefGoogle Scholar
  38. Pearlson GD, Calhoun VD, Liu J (2015) An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders. Front Genet 6:276CrossRefGoogle Scholar
  39. Premi E, Calhoun V, Garibotto V, Turrone R, Alberici A, Cottini E, Paghera B et al (2017) Source-based morphometry multivariate approach to analyze [123I] FP-CIT SPECT imaging. Mol Imaging Biol 19:1–7CrossRefGoogle Scholar
  40. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1):42–52.  https://doi.org/10.1016/j.neuron.2009.03.024 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Segall Judith M, Turner JA, van Erp TGM, White T, Bockholt HJ, Gollub RL, Calhoun VD et al (2009) Voxel-based morphometric multisite collaborative study on schizophrenia. Schizophr Bull 35(1):82–95.  https://doi.org/10.1093/schbul/sbn150 CrossRefPubMedGoogle Scholar
  42. Segall Judith Maxine, Allen EA, Jung RE, Erhardt EB, Arja SK, Kiehl KA, Calhoun VD (2012) Correspondence between structure and function in the human brain at rest. Front Neuroinform 6:10CrossRefGoogle Scholar
  43. Silver M, Montana G, Nichols TE, Alzheimer’s Disease Neuroimaging Initiative (2011) False positives in neuroimaging genetics using voxel-based morphometry data. Neuroimage 54(2):992–1000CrossRefGoogle Scholar
  44. Sprooten E, Gupta CN, Knowles EE, McKay DR, Mathias SR, Curran JE, Dyer TD et al (2015) Genome-wide significant linkage of schizophrenia-related neuroanatomical trait to 12q24. Am J Med Genet Part B Neuropsychiatr Genet 168(8):678–686CrossRefGoogle Scholar
  45. Sui J, Adali T, Yu Q, Chen J, Calhoun VD (2012) A review of multivariate methods for multimodal fusion of brain imaging data. J Neurosci Methods 204(1):68–81CrossRefGoogle Scholar
  46. Turner JA, Calhoun VD, Michael A, Van Erp TG, Ehrlich S, Segall JM, Ho B-C et al (2012) Heritability of multivariate gray matter measures in schizophrenia. Twin Res Human Genet 15(03):324–335CrossRefGoogle Scholar
  47. Wolf RC, Huber M, Lepping P, Sambataro F, Depping MS, Karner M, Freudenmann RW (2014) Source-based morphometry reveals distinct patterns of aberrant brain volume in delusional infestation. Prog Neuropsychopharmacol Biol Psychiatry 48:112–116CrossRefGoogle Scholar
  48. Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD (2009a) Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp 30(3):711–724CrossRefGoogle Scholar
  49. Xu L, Pearlson G, Calhoun VD (2009b) Joint source based morphometry identifies linked gray and white matter group differences. Neuroimage 44(3):777–789CrossRefGoogle Scholar
  50. Xu L, Adali T, Schretlen D, Pearlson G, Calhoun VD (2011) Structural angle and power images reveal interrelated gray and white matter abnormalities in schizophrenia. Neurol Res Int 2012:735249.  https://doi.org/10.1155/2012/735249 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yu Q, Du Y, Chen J, He H, Sui J, Pearlson G, Calhoun VD (2017) Comparing brain graphs in which nodes are regions of interest or independent components: a simulation study. J Neurosci Methods 291:61–68.  https://doi.org/10.1016/j.jneumeth.2017.08.007 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaUS
  2. 2.Neural Engineering Lab, Department of Biosciences and Bioengineering (BSBE)Indian Institute of Technology GuwahatiGuwahatiIndia
  3. 3.Department of Psychology and Neuroscience InstituteGeorgia State UniversityAtlantaUSA
  4. 4.Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations