Advertisement

Brain Structure and Function

, Volume 224, Issue 9, pp 3019–3029 | Cite as

Hippocampal place cells are topographically organized, but physical space has nothing to do with it

  • Thiago F. A. FrançaEmail author
  • José M. Monserrat
Review

Abstract

Topographical organization can be found in many areas of the cerebral cortex, although its presence in higher order cortices is debated. Some studies evaluated whether this pattern of organization is present in the hippocampus, trying to determine whether hippocampal place cells are organized around a topographical map of space. Those studies indicated that the topographical organization of hippocampal place cells is either very limited or simply nonexistent. In this paper, we argue for a different interpretation of available evidence and suggest that there is a topographical organization in hippocampal place cells, but the topographical map formed is not a map of the physical space. Although place cell firing is correlated with the animal’s position and is important to spatial navigation, place cells encode much more information than just location. Thus, we should not expect the topographical map to be organized around physical space, but around an abstract, multidimensional space containing the receptive fields of place cells. We show that this conclusion is supported by two of the main theories of hippocampal function–cognitive map theory and index theory–which, when carefully analyzed, make exactly the same predictions about hippocampal topography. Such abstract topographical map would be extremely hard to find using the methods commonly employed in the literature, but there are some approaches that may, in the future, make possible to characterize the topographical organization in the hippocampus and other high-order brain regions.

Keywords

Topography Hippocampus Spatial navigation Topographical map Neural code 

Notes

Funding

TFAF received financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001. JMM receives a productivity research grant from the Conselho Nacional de Desenvolvimento Científico e Tecnológico–Brasil (CNPq)–Grant number: PQ 308539/2016-8.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

References

  1. Anderson MI, Jeffery KJ (2003) Heterogeneous modulation of place cell firing by changes in context. J Neurosci 23(26):8827–8835CrossRefGoogle Scholar
  2. Aronov D, Nevers R, Tank DW (2017) Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543(7647):719–722.  https://doi.org/10.1038/nature21692 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Battaglia FP (2004) Local Sensory Cues and Place Cell Directionality: additional Evidence of Prospective Coding in the Hippocampus. J Neurosci 24(19):4541–4550CrossRefGoogle Scholar
  4. Bellmund JLS, Gärdenfors P, Moser EI, Doeller CF (2018) Navigating cognition: spatial codes for human thinking. Science.  https://doi.org/10.1126/science.aat6766 CrossRefPubMedGoogle Scholar
  5. Brivanlou IH, Dantzker JL, Stevens CF, Callaway EM (2004) Topographic specificity of functional connections from hippocampal CA3 to CA1. PNAS 101(8):2560–2565CrossRefGoogle Scholar
  6. Bush D, Barry C, Burgess N (2014) What do grid cells contribute to place cell firing? Trends Neurosci 37(3):136–145CrossRefGoogle Scholar
  7. Buzsáki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68(3):362–385.  https://doi.org/10.1016/j.neuron.2010.09.023 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buzsáki G, Llinás R (2017) Space and time in the brain. Science 358(6362):482–485.  https://doi.org/10.1126/science.aan8869 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen G, Manson D, Cacucci F, Wills TJ (2016) Absence of visual input results in the disruption of grid cell firing in the mouse. Curr Biol 26(17):2335–2342CrossRefGoogle Scholar
  10. Cohen JD, Bolstad M, Lee AK (2017) Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. ELife 6:e23040.  https://doi.org/10.7554/eLife.23040 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Constantinescu AO, OReilly JX, Behrens TEJ (2016) Organizing conceptual knowledge in humans with a gridlike code. Science 352(6292):1464–1468.  https://doi.org/10.1126/science.aaf0941 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Davidson TJ, Kloosterman F, Wilson MA (2009) Hippocampal replay of extended experience. Neuron 63(4):497–507.  https://doi.org/10.1016/j.neuron.2009.07.027 CrossRefPubMedPubMedCentralGoogle Scholar
  13. de Vries SEJ, Lecoq J, Buice MA, Groblewski PA, Ocker GK, Oliver M, Koch C (2018) A large-scale, standardized physiological survey reveals higher order coding throughout the mouse visual cortex. BioRxiv.  https://doi.org/10.1101/359513 CrossRefGoogle Scholar
  14. Deadwyler SA, Berger TW, Sweatt AJ, Song D, Chan RHM, Opris I, Hampson RE (2013) Donor/recipient enhancement of memory in rat hippocampus. Front Syst Neurosci.  https://doi.org/10.3389/fnsys.2013.00120 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Doeller CF, Barry C, Burgess N (2010) Evidence for grid cells in a human memory network. Nature 463(7281):657–661.  https://doi.org/10.1038/nature08704 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13(11):1433–1440CrossRefGoogle Scholar
  17. Eichenbaum H, Cohen NJ (1988) Representation in the hippocampus: what do hippocampal neurons code? Trends Neurosci 11(6):244–248CrossRefGoogle Scholar
  18. Eichenbaum H, Wiener SI, Shapiro ML, Cohen NJ (1989) The organization of spatial coding in the hippocampus: a study of neural ensemble activity. J Neurosci 9(8):2764–2775CrossRefGoogle Scholar
  19. Fenton AA, Lytton WW, Barry JM, Lenck-Santini PP, Zinyuk LE, Kubik S, Olypher AV (2010) Attention-like modulation of hippocampus place cell discharge. J Neurosci 30(13):4613–4625CrossRefGoogle Scholar
  20. França TFA, Monserrat JM (2018) How the hippocampus represents memories: making sense of memory allocation studies. BioEssays 40(11):800068.  https://doi.org/10.1002/bies.201800068 CrossRefGoogle Scholar
  21. Galaburda AM, Rosen GD, Sherman GF (1990) Individual variability in cortical organization: its relationship to brain laterality and implications to function. Neuropsychologia 28(6):529–546.  https://doi.org/10.1016/0028-3932(90)90032-J CrossRefPubMedGoogle Scholar
  22. Geiller T, Fattahi M, Choi J-S, Royer S (2017) Place cells are more strongly tied to landmarks in deep than in superficial CA1. Nat Commun 8:14531CrossRefGoogle Scholar
  23. Gu Y, Lewallen S, Kinkhabwala AA, Domnisoru C, Yoon K, Gauthier JL, Tank DW (2018) A map-like micro-organization of grid cells in the medial entorhinal cortex. Cell 175(3):736–750.e30.  https://doi.org/10.1016/j.cell.2018.08.066 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801–806.  https://doi.org/10.1038/nature03721 CrossRefPubMedGoogle Scholar
  25. Hampson RE, Simeral JD, Deadwyler SA (1999) Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402(6762):610–614CrossRefGoogle Scholar
  26. Hampson RE, Song D, Chan RHM, Sweatt AJ, Riley MR, Gerhardt GA, Deadwyler SA (2012) A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation. IEEE Trans Neural Syst Rehabil Eng 20(2):184–197.  https://doi.org/10.1109/TNSRE.2012.2189163 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hartley T, Lever C, Burgess N, O’Keefe J (2013) Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc B Biol Sci 369(1635):20120510CrossRefGoogle Scholar
  28. Heisenberg W (1958) Physics and philosophy: the revolution in modern science. Harper and Brothers Publishers, New YorkGoogle Scholar
  29. Heys JG, Rangarajan KV, Dombeck DA (2014) The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron 84(5):1079–1090.  https://doi.org/10.1016/j.neuron.2014.10.048 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hok V, Lenck-Santini P-P, Roux S, Save E, Muller RU, Poucet B (2007) Goal-related activity in hippocampal place cells. J Neurosci 27(3):472–482CrossRefGoogle Scholar
  31. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154CrossRefGoogle Scholar
  32. Jazayeri M, Afraz A (2017) Navigating the neural space in search of the neural code. Neuron 93(5):1003–1014.  https://doi.org/10.1016/j.neuron.2017.02.019 CrossRefPubMedGoogle Scholar
  33. Jeffery KJ (2007) Integration of the sensory inputs to place cells: what, where, why, and how? Hippocampus 17(9):775–785CrossRefGoogle Scholar
  34. Jeffery KJ, Gilbert A, Burton S, Strudwick A (2003) Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. Hippocampus 13(2):175–189CrossRefGoogle Scholar
  35. Jonas E, Kording KP (2017) Could a neuroscientist understand a microprocessor? PLoS Comput Biol 13(1):e1005268.  https://doi.org/10.1371/journal.pcbi.1005268 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Karlsson MP, Frank LM (2009) Awake replay of remote experiences in the hippocampus. Nat Neurosci 12(7):913–918.  https://doi.org/10.1038/nn.2344 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42(2):283–295CrossRefGoogle Scholar
  38. Kesner RP, Rolls ET (2015) A computational theory of hippocampal function, and tests of the theory: new developments. Neurosci Biobehav Rev 48:92–147.  https://doi.org/10.1016/j.neubiorev.2014.11.009 CrossRefPubMedGoogle Scholar
  39. Knierim JJ (2015) The hippocampus. Curr Biol 25:R1107–R1125CrossRefGoogle Scholar
  40. Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D (2017) Neuroscience needs behavior: correcting a reductionist bias. Neuron 93(3):480–490.  https://doi.org/10.1016/j.neuron.2016.12.041 CrossRefPubMedGoogle Scholar
  41. Krupic J, Bauza M, Burton S, Barry C, O’Keefe J (2015) Grid cell symmetry is shaped by environmental geometry. Nature 518(7538):232–235CrossRefGoogle Scholar
  42. Kumaran D, Hassabis D, McClelland JL (2016) What learning systems do intelligent agents need? complementary learning systems theory updated. Trends Cogn Sci 20(7):512–534.  https://doi.org/10.1016/j.tics.2016.05.004 CrossRefPubMedGoogle Scholar
  43. Lehky SR, Sejnowski TJ (1988) Network model of shape-from-shading: neural function arises from both projective and receptive fields. Nature 333(2):452–454CrossRefGoogle Scholar
  44. Lisman J, Buzsáki G, Eichenbaum H, Nadel L, Rangananth C, Redish AD (2017) Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci 20(11):1434–1447.  https://doi.org/10.1038/nn.4661 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mailly P, Charpier S, Mahon S, Menetrey A, Thierry AM, Glowinski J, Deniau JM (2001) Dendritic arborizations of the rat substantia Nigra pars reticulata neurons: spatial organization and relation to the Lamellar compartmentation of Striato-Nigral projections. J Neurosci 21(17):6874–6888CrossRefGoogle Scholar
  46. Marr D (1971) Simple memory: a theory for the archicortex. Phil Trans R Soc Lond. B 262:23–81.  https://doi.org/10.1098/rstb.1971.0078 CrossRefGoogle Scholar
  47. McNaughton L, Morris RGM (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10(10):408–415CrossRefGoogle Scholar
  48. Meister M, Tessier-Lavgine M (2013) Low-level visual processing: the retina. In: Kandel E, Shwartz JH, Jessel TM, Siegelbaum SA, Hudspeth AJ (eds) Principles of neural science, 5th edn. McGraw-Hill Inc, New York, pp 577–601Google Scholar
  49. Moser EI, Moser MB (2013) Grid Cells and Neural Coding in High-End Cortices. Neuron 80(3):765–774.  https://doi.org/10.1016/j.neuron.2013.09.043 CrossRefPubMedGoogle Scholar
  50. Moser EI, Moser M-B, McNaughton BL (2017) Spatial representation in the hippocampal formation: a history. Nat Neurosci 20(11):1448–1464.  https://doi.org/10.1038/nn.4653 CrossRefGoogle Scholar
  51. Nadasdy Z, Nguyen TP, Török Á, Shen JY, Briggs DE, Modur PN, Buchanan RJ (2017) Context-dependent spatially periodic activity in the human entorhinal cortex. Proceedings of the National Academy of Sciences 114(17),: E3516–E3525.  https://doi.org/10.1073/pnas.1701352114 CrossRefGoogle Scholar
  52. Nádasdy Z, Hirase H, Czurkó A, Csicsvari J, Buzsáki G (1999) Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19(21):9497–9507.  https://doi.org/10.1523/JNEUROSCI.19-21-09497.1999 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nakamura NH, Fukunaga M, Akama KT, Soga T, Ogawa S, Pavlides C (2010) Hippocampal cells encode places by forming small anatomical clusters. Neuroscience 166(3):994–1007.  https://doi.org/10.1016/j.neuroscience.2009.12.069 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nolan CR, Vromen JMG, Cheung A, Baumann O (2018) Evidence against the Detectability of a Hippocampal Place Code Using Functional Magnetic Resonance Imaging. Eneuro 5(4):ENEURO.0177–ENEURO.0178.  https://doi.org/10.1523/ENEURO.0177-18.2018 CrossRefGoogle Scholar
  55. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research 34(1):171–175CrossRefGoogle Scholar
  56. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, OxfordGoogle Scholar
  57. Panzeri S, Macke JH, Gross J, Kayser C (2015) Neural population coding: combining insights from microscopic and mass signals. Trends Cogn Sci 19(3):162–172CrossRefGoogle Scholar
  58. Panzeri S, Harvey CD, Piasini E, Latham PE, Fellin T (2017) Cracking the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron 93(3):491–507.  https://doi.org/10.1016/j.neuron.2016.12.036 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Patel GH, Kaplan DM, Snyder LH (2014) Topographic organization in the brain: searching for general principles. Trends Cogn Sci 18(7):351–363.  https://doi.org/10.1016/j.tics.2014.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ (2017) Hippocampal GABAergic inhibitory interneurons. Physiol Rev 97:1619–1747.  https://doi.org/10.1152/physrev.00007.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Quian Quiroga R, Kreiman G (2010) Measuring sparseness in the brain: comment on Bowers (2009). Psychol Rev 117(1):291–297.  https://doi.org/10.1037/a0016917 CrossRefPubMedGoogle Scholar
  62. Redish AD, Battaglia FP, Chawla MK, Ekstrom AD, Gerrard JL, Lipa P, McNaughton BL (2001) Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J Neurosci 21(5):RC134CrossRefGoogle Scholar
  63. Sloviter RS, Brisman JL (1995) Lateral inhibition and granule cell synchrony in the rat hippocampal dentate gyrus. J Neurosci 15:811–820CrossRefGoogle Scholar
  64. Stefanelli T, Bertollini C, Lüscher C, Muller D, Mendez P (2016) Hippocampal Somatostatin Interneurons Control the Size of Neuronal Memory Ensembles. Neuron 89(5):1074–1085.  https://doi.org/10.1016/j.neuron.2016.01.024 CrossRefPubMedGoogle Scholar
  65. Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15(10):655–669.  https://doi.org/10.1038/nrn3785 CrossRefPubMedGoogle Scholar
  66. Strüber M, Jonas P, Bartos M (2015) Strength and duration of perisomatic GABAergic inhibition depend on distance between synaptically connected cells. Proc Natl Acad Sci 112:1220–1225.  https://doi.org/10.1073/pnas.1412996112 CrossRefPubMedGoogle Scholar
  67. Takahashi S, Sakurai Y (2009) Sub-millisecond firing synchrony of closely neighboring pyramidal neurons in hippocampal CA1 of rats during delayed non-matching to sample task. Front Neural Circuits.  https://doi.org/10.3389/neuro.04.009.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tamamaki N, Nojyo Y (1995) Preservation of topography in the connections between the subiculum, field CA1 and the entorhinal cortex in rats. J Comp Neurol 353:379–390CrossRefGoogle Scholar
  69. Tanaka KZ, He H, Tomar A, Niisato K, Huang AJY, McHugh TJ (2018) The hippocampal engram maps experience but not place. Science 361(6400):392–397CrossRefGoogle Scholar
  70. Teyler TJ, DiScenna P (1985) The role of hippocampus in memory: a hypothesis. Neurosci Biobehav Rev 9(3):377–389.  https://doi.org/10.1016/0149-7634(85)90016-8 CrossRefPubMedGoogle Scholar
  71. Teyler TJ, DiScenna P (1986) The hippocampal memory indexing theory. Behav Neurosci 100(2):147–154CrossRefGoogle Scholar
  72. Teyler TJ, Rudy JW (2007) The hippocampal indexing theory and episodic memory: updating the index. Hippocampus 17(12):1158–1169.  https://doi.org/10.1002/hipo.20350 CrossRefPubMedGoogle Scholar
  73. Thivierge J-P, Marcus GF (2007) The topographic brain: from neural connectivity to cognition. Trends Neurosci 30(6):251–259CrossRefGoogle Scholar
  74. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55(4):189–208.  https://doi.org/10.1037/h0061626 CrossRefPubMedGoogle Scholar
  75. Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4(3):374–391.  https://doi.org/10.1002/hipo.450040319 CrossRefPubMedGoogle Scholar
  76. Wilson M, McNaughto B (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265(5172):676–679.  https://doi.org/10.1126/science.8036517 CrossRefPubMedGoogle Scholar
  77. Witter MP (1993) Organization of the entorhinal—hippocampal system: a review of current anatomical data. Hippocampus 3(S1):33–44PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências FisiológicasUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil

Personalised recommendations