Advertisement

A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders

  • Alvaro DuqueEmail author
  • Reynold SpectorEmail author
Review

Abstract

There is a widespread belief that neurogenesis exists in adult human brain, especially in the dentate gyrus, and it is to be maintained and, if possible, augmented with different stimuli including exercise and certain drugs. Here, we examine the evidence for adult human neurogenesis and note important limitations of the methodologies used to study it. A balanced review of the literature and evaluation of the data indicate that adult neurogenesis in human brain is improbable. In fact, in several high-quality recent studies in adult human brain, unlike in adult brains of other species, neurogenesis was not detectable. These findings suggest that the human brain requires a permanent set of neurons to maintain acquired knowledge for decades, which is essential for complex high cognitive functions unique to humans. Thus, stimulation and/or injection of neural stem cells into human brains may not only disrupt brain homeostatic systems, but also disturb normal neuronal circuits. We propose that the focus of research should be the preservation of brain neurons by prevention of damage, not replacement.

Keywords

Adult neurogenesis Neural stem cells Memory Bromodeoxyuridine Homeostasis Neuronal protection DNA repair/methylation 

Abbreviations

AN

Adult neurogenesis

BBB

Blood–brain barrier

B-CSF

Blood–cerebrospinal fluid barrier

BrdU

Bromodeoxyuridine

CP

Choroid plexus

CSF

Cerebrospinal fluid

DG

Dentate gyrus

NSC

Neural stem cell

SNc

Substantia nigra pars compacta

SGZ

Subgranular zone

VZ-SVZ

Ventricular zone–subventricular zone

Notes

Acknowledgements

The authors wish to thank Michiko Spector for her valuable contribution in the preparation of this manuscript. This work has been made in part possible by MacBrainResource.

Funding

NIMH R01-MH113257 to AD.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

The author declares that the manuscript is in complete compliance with the ethical standards of Brain Structure and Function.

Ethical approval and inform consent

This is a review article and no procedures of any kind were performed on any animals or humans by the authors themselves. This review article is in accordance with general ethical standards of scientific conduct and scientific writing.

References

  1. Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HL, Wheeler AL, Guskjolen A, Niibori Y, Shoji H, Ohira K, Richards BA, Miyakawa T, Josselyn SA, Frankland PW (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344:598–602CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andreae LC (2018) Adult neurogenesis in humans: dogma overturned, again and again? Sci Trans Med 10:eaat3893CrossRefGoogle Scholar
  3. Arellano JI, Harding B, Thomas JL (2018) Adult human hippocampus: no new neurons in sight. Cereb Cortex 28:2479–2481CrossRefPubMedGoogle Scholar
  4. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970CrossRefPubMedGoogle Scholar
  5. Bakay RA (2005) Neural transplantation. J Neurosurg 103:6–8 (discussion 8) CrossRefPubMedGoogle Scholar
  6. Bannigan J, Langman J (1979) The cellular effect of 5-bromodeoxyuridine on the mammalian embryo. J Embryol Exp Morphol 50:123–135PubMedGoogle Scholar
  7. Ben Abdallah NM, Slomianka L, Vyssotski AL, Lipp HP (2010) Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging 31:151–161CrossRefPubMedGoogle Scholar
  8. Benjamin EJ et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137:e67–e492CrossRefPubMedGoogle Scholar
  9. Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 21:6718–6731CrossRefPubMedGoogle Scholar
  10. Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, Kutschera W, Johnson L, Landen M, Druid H, Spalding KL, Frisen J (2012) The age of olfactory bulb neurons in humans. Neuron 74:634–639CrossRefPubMedGoogle Scholar
  11. Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Bjork-Eriksson T, Nordborg C, Gage FH, Druid H, Eriksson PS, Frisen J (2006) Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci USA 103:12564–12568CrossRefPubMedGoogle Scholar
  12. Biggers WJ, Barnea ER, Sanyal MK (1987) Anomalous neural differentiation induced by 5-bromo-2’-deoxyuridine during organogenesis in the rat. Teratology 35:63–75CrossRefPubMedGoogle Scholar
  13. Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38:1068–1077CrossRefPubMedPubMedCentralGoogle Scholar
  14. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(589–599):e585Google Scholar
  15. Breunig JJ, Arellano JI, Macklis JD, Rakic P (2007) Everything that glitters isn’t gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell 1:612–627CrossRefPubMedGoogle Scholar
  16. Charvet CJ, Finlay BL (2018) Comparing adult hippocampal neurogenesis across species: translating time to predict the tempo in humans. Front Neurosci 12:706CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen Y, Sun FY (2007) Age-related decrease of striatal neurogenesis is associated with apoptosis of neural precursors and newborn neurons in rat brain after ischemia. Brain Res 1166:9–19CrossRefPubMedGoogle Scholar
  18. Chen X, Wang K (2016) The fate of medications evaluated for ischemic stroke pharmacotherapy over the period 1995–2015. Acta Pharm Sin B 6:522–530CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK (2000) Enhancement of hippocampal neurogenesis by lithium. J Neurochem 75:1729–1734CrossRefPubMedGoogle Scholar
  20. Cipriani S, Ferrer I, Aronica E, Kovacs GG, Verney C, Nardelli J, Khung S, Delezoide AL, Milenkovic I, Rasika S, Manivet P, Benifla JL, Deriot N, Gressens P, Adle-Biassette H (2018) Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer’s Disease adults. Cereb Cortex 28:2458–2478CrossRefPubMedGoogle Scholar
  21. Cope EC, Gould E (2019) Adult Neurogenesis, glia, and the extracellular matrix. Cell Stem Cell 24:690–705CrossRefPubMedGoogle Scholar
  22. Crow D (2019) Could iPSCs enable “off-the-shelf” cell therapy? Cell 177:1667–1669CrossRefPubMedGoogle Scholar
  23. Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT (2016) Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol 42:621–638CrossRefPubMedPubMedCentralGoogle Scholar
  24. Doorn KJ, Drukarch B, van Dam AM, Lucassen PJ (2014) Hippocampal proliferation is increased in presymptomatic Parkinson’s disease and due to microglia. Neural Plast 2014:959154CrossRefPubMedPubMedCentralGoogle Scholar
  25. Duque A, Rakic P (2011) Different effects of bromodeoxyuridine and [3H]thymidine incorporation into DNA on cell proliferation, position, and fate. J Neurosci 31:15205–15217CrossRefPubMedPubMedCentralGoogle Scholar
  26. Duque A, Rakic P (2015) Identification of proliferating and migrating cells by BrdU and other thymidine analogues. Benefits and limitations. In: Merighi A, Lossi L (eds) Immunocytochemistry and related techniques. Springer, New york, pp 123–129CrossRefGoogle Scholar
  27. Eckenhoff MF, Rakic P (1988) Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey. J Neurosci 8:2729–2747CrossRefPubMedGoogle Scholar
  28. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisen J (2014) Neurogenesis in the striatum of the adult human brain. Cell 156:1072–1083CrossRefGoogle Scholar
  30. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, Wijngaard P, Horton JD, Taubel J, Brooks A, Fernando C, Kauffman RS, Kallend D, Vaishnaw A, Simon A (2017) A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med 376:41–51CrossRefPubMedPubMedCentralGoogle Scholar
  31. Foland LC, Altshuler LL, Sugar CA, Lee AD, Leow AD, Townsend J, Narr KL, Asuncion DM, Toga AW, Thompson PM (2008) Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. NeuroReport 19:221–224CrossRefPubMedPubMedCentralGoogle Scholar
  32. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719CrossRefPubMedGoogle Scholar
  33. Gage FH (2019) Adult neurogenesis in mammals. Science 364:827–828CrossRefPubMedGoogle Scholar
  34. George PM, Steinberg GK (2015) Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron 87:297–309CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gomez-Climent MA, Castillo-Gomez E, Varea E, Guirado R, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J (2008) A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex 18:2229–2240CrossRefPubMedGoogle Scholar
  36. Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488CrossRefPubMedGoogle Scholar
  37. Gould E, Reeves AJ, Graziano MS, Gross CG (1999) Neurogenesis in the neocortex of adult primates. Science 286:548–552CrossRefPubMedGoogle Scholar
  38. Gould E, Vail N, Wagers M, Gross CG (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA 98:10910–10917CrossRefPubMedGoogle Scholar
  39. Groves JO, Leslie I, Huang GJ, McHugh SB, Taylor A, Mott R, Munafo M, Bannerman DM, Flint J (2013) Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model. PLoS Genet 9:e1003718CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gusel’nikova VV, Korzhevskiy DE (2015) NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Naturae 7:42–47PubMedPubMedCentralGoogle Scholar
  41. Gutierrez-Fernandez M, Fuentes B, Rodriguez-Frutos B, Ramos-Cejudo J, Vallejo-Cremades MT, Diez-Tejedor E (2012) Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke. J Cell Mol Med 16:2280–2290CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hauser T, Klaus F, Lipp HP, Amrein I (2009) No effect of running and laboratory housing on adult hippocampal neurogenesis in wild caught long-tailed wood mouse. BMC Neurosci 10:43CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hsu TC, Somers CE (1961) Effect of 5-bromodeoxyuridine on mamalian chromosomes. Proc Natl Acad Sci USA 47:396–403CrossRefPubMedGoogle Scholar
  44. Jakubs K, Nanobashvili A, Bonde S, Ekdahl CT, Kokaia Z, Kokaia M, Lindvall O (2006) Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron 52:1047–1059CrossRefPubMedGoogle Scholar
  45. Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M, Lee MG, Jang IS, Lee WH, Suk K (2013) Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. J Immunol 191:5204–5219CrossRefPubMedGoogle Scholar
  46. Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y, Banwait S, Greenberg DA (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA 103:13198–13202CrossRefPubMedGoogle Scholar
  47. Kempermann G (2006) They are not too excited: the possible role of adult-born neurons in epilepsy. Neuron 52:935–937CrossRefPubMedGoogle Scholar
  48. Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, Gould E, Hen R, Abrous DN, Toni N, Schinder AF, Zhao X, Lucassen PJ, Frisen J (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23:25–30CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37:267–274CrossRefPubMedGoogle Scholar
  50. Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, Mizuma H, Takara S, Takahashi R, Inoue H, Morita S, Yamamoto M, Okita K, Nakagawa M, Parmar M, Takahashi J (2017) Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548:592–596CrossRefPubMedGoogle Scholar
  51. Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G (2011) Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS One 6:e25760CrossRefPubMedPubMedCentralGoogle Scholar
  52. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 5:e8809CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kohler SJ, Williams NI, Stanton GB, Cameron JL, Greenough WT (2011) Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds 6 months. Proc Natl Acad Sci USA 108:10326–10331CrossRefPubMedGoogle Scholar
  54. Koketsu D, Mikami A, Miyamoto Y, Hisatsune T (2003) Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J Neurosci 23:937–942CrossRefPubMedGoogle Scholar
  55. Kolb B, Pedersen B, Ballermann M, Gibb R, Whishaw IQ (1999) Embryonic and postnatal injections of bromodeoxyuridine produce age-dependent morphological and behavioral abnormalities. J Neurosci 19:2337–2346CrossRefPubMedGoogle Scholar
  56. Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, Decesare S, Jovin T, Zafonte R, Lebowitz J, Flickinger JC, Tong D, Marks MP, Jamieson C, Luu D, Bell-Stephens T, Teraoka J (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45CrossRefPubMedGoogle Scholar
  57. Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773CrossRefPubMedGoogle Scholar
  58. Kornack DR, Rakic P (2001) Cell proliferation without neurogenesis in adult primate neocortex. Science 294:2127–2130CrossRefPubMedGoogle Scholar
  59. Kuan CY, Schloemer AJ, Lu A, Burns KA, Weng WL, Williams MT, Strauss KI, Vorhees CV, Flavell RA, Davis RJ, Sharp FR, Rakic P (2004) Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci 24:10763–10772CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kuhn HG, Toda T, Gage FH (2018) Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci 38(49):10401–10410CrossRefPubMedPubMedCentralGoogle Scholar
  61. La Rosa C, Ghibaudi M, Bonfanti L (2019) Newly generated and non-newly generated “immature” neurons in the mammalian brain: a possible reservoir of young cells to prevent brain aging and disease? J Clin Med 8:685.  https://doi.org/10.3390/jcm8050685 CrossRefPubMedCentralGoogle Scholar
  62. Lee H, Thuret S (2018) Adult human hippocampal neurogenesis: controversy and evidence. Trends Mol Med 24:521–522CrossRefPubMedGoogle Scholar
  63. Lehner B, Sandner B, Marschallinger J, Lehner C, Furtner T, Couillard-Despres S, Rivera FJ, Brockhoff G, Bauer HC, Weidner N, Aigner L (2011) The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell Tissue Res 345:313–328CrossRefPubMedGoogle Scholar
  64. Levkoff LH, Marshall GP 2nd, Ross HH, Caldeira M, Reynolds BA, Cakiroglu M, Mariani CL, Streit WJ, Laywell ED (2008) Bromodeoxyuridine inhibits cancer cell proliferation in vitro and in vivo. Neoplasia 10:804–816CrossRefPubMedPubMedCentralGoogle Scholar
  65. Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lindvall O, Kokaia Z (2015) Neurogenesis following stroke affecting the adult brain. Cold Spring Harb Perspect Biol 7:a019034CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lipp HP, Bonfanti L (2016) Adult neurogenesis in mammals: variations and confusions. Brain Behav Evol 87:205–221CrossRefPubMedGoogle Scholar
  68. Lu Z, Elliott MR, Chen Y, Walsh JT, Klibanov AL, Ravichandran KS, Kipnis J (2011) Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nat Cell Biol 13:1076–1083CrossRefPubMedPubMedCentralGoogle Scholar
  69. Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009) DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex 19:1028–1041CrossRefPubMedGoogle Scholar
  70. Mathews KJ, Allen KM, Boerrigter D, Ball H, Shannon Weickert C, Double KL (2017) Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell 16:1195–1199CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mongiat LA, Schinder AF (2014) Neuroscience. A price to pay for adult neurogenesis. Science 344:594–595CrossRefPubMedGoogle Scholar
  72. Moreno-Jimenez EP, Flor-Garcia M, Terreros-Roncal J, Rabano A, Cafini F, Pallas-Bazarra N, Avila J, Llorens-Martin M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25:554–560CrossRefPubMedGoogle Scholar
  73. Morris SM (1991) The genetic toxicology of 5-bromodeoxyuridine in mammalian cells. Mutat Res 258:161–188CrossRefPubMedGoogle Scholar
  74. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414CrossRefPubMedGoogle Scholar
  75. Ovsepian SV (2019) The dark matter of the brain. Brain Struct Funct 224:973–983CrossRefPubMedGoogle Scholar
  76. Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A (2016) Brain size and limits to adult neurogenesis. J Comp Neurol 524:646–664CrossRefPubMedGoogle Scholar
  77. Paredes MF, Sorrells SF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez Martin AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A (2018) Does adult neurogenesis persist in the human hippocampus? Cell Stem Cell 23:780–781CrossRefPubMedGoogle Scholar
  78. Parent JM, Lowenstein DH (2002) Seizure-induced neurogenesis: are more new neurons good for an adult brain? Prog Brain Res 135:121–131CrossRefPubMedGoogle Scholar
  79. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813CrossRefPubMedGoogle Scholar
  80. Parolisi R, Cozzi B, Bonfanti L (2018) Humans and dolphins: decline and fall of adult neurogenesis. Front Neurosci 12:497CrossRefPubMedPubMedCentralGoogle Scholar
  81. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717CrossRefPubMedGoogle Scholar
  82. Rakic P (1985) Limits of neurogenesis in primates. Science 227:1054–1056CrossRefPubMedGoogle Scholar
  83. Rakic P (2002a) Neurogenesis in adult primates. Prog Brain Res 138:3–14CrossRefPubMedGoogle Scholar
  84. Rakic P (2002b) Adult neurogenesis in mammals: an identity crisis. J Neurosci 22:614–618CrossRefPubMedGoogle Scholar
  85. Rakic P (2002c) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3:65–71CrossRefPubMedGoogle Scholar
  86. Ross HH, Levkoff LH, Marshall GP 2nd, Caldeira M, Steindler DA, Reynolds BA, Laywell ED (2008) Bromodeoxyuridine induces senescence in neural stem and progenitor cells. Stem Cells 26:3218–3227CrossRefPubMedPubMedCentralGoogle Scholar
  87. Saffhill R, Ockey CH (1985) Strand breaks arising from the repair of the 5-bromodeoxyuridine-substituted template and methyl methanesulphonate-induced lesions can explain the formation of sister chromatid exchanges. Chromosoma 92:218–224CrossRefPubMedGoogle Scholar
  88. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744CrossRefPubMedGoogle Scholar
  89. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386CrossRefPubMedPubMedCentralGoogle Scholar
  90. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809CrossRefGoogle Scholar
  91. Sekerkova G, Ilijic E, Mugnaini E (2004) Bromodeoxyuridine administered during neurogenesis of the projection neurons causes cerebellar defects in rat. J Comp Neurol 470:221–239CrossRefPubMedGoogle Scholar
  92. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495CrossRefPubMedPubMedCentralGoogle Scholar
  93. Snyder JS (2018) Questioning human neurogenesis. Nature 555:315–316CrossRefPubMedGoogle Scholar
  94. Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P, Brown A, Kamhi JF, Cameron HA (2009) Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci 29:14484–14495CrossRefPubMedPubMedCentralGoogle Scholar
  95. Snyder JS, Grigereit L, Russo A, Seib DR, Brewer M, Pickel J, Cameron HA (2016) A transgenic rat for specifically inhibiting adult neurogenesis. eNeuro 3Google Scholar
  96. Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377–381CrossRefPubMedPubMedCentralGoogle Scholar
  97. Spalding KL, Bhardwaj RD, Buchholz BA, Druid H, Frisen J (2005) Retrospective birth dating of cells in humans. Cell 122:133–143CrossRefPubMedGoogle Scholar
  98. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227CrossRefPubMedPubMedCentralGoogle Scholar
  99. Spector R (2009) Nutrient transport systems in brain: 40 years of progress. J Neurochem 111:315–320CrossRefPubMedGoogle Scholar
  100. Spector R (2010) Nature and consequences of mammalian brain and CSF efflux transporters: four decades of progress. J Neurochem 112:13–23CrossRefPubMedGoogle Scholar
  101. Spector R (2014) Vitamin transport diseases of brain: focus on folates. Thiamine Riboflavin Brain Disord Therapy 3:6Google Scholar
  102. Spector R (2016) New insight into the dietary cause of atherosclerosis: implications for pharmacology. J Pharmacol Exp Ther 358:103–108CrossRefPubMedGoogle Scholar
  103. Spector R, Johanson CE (2007) The origin of deoxynucleosides in brain: implications for the study of neurogenesis and stem cell therapy. Pharm Res 24:859–867CrossRefPubMedGoogle Scholar
  104. Spector R, Johanson CE (2010) Vectorial ligand transport through mammalian choroid plexus. Pharm Res 27:2054–2062CrossRefPubMedGoogle Scholar
  105. Spector R, Johanson CE (2014) The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain. Mol Brain 7:3CrossRefPubMedPubMedCentralGoogle Scholar
  106. Spector R, Robert Snodgrass S, Johanson CE (2015a) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57–68CrossRefPubMedGoogle Scholar
  107. Spector R, Keep RF, Robert Snodgrass S, Smith QR, Johanson CE (2015b) A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol 267:78–86CrossRefPubMedGoogle Scholar
  108. Streit WJ (2000) Microglial response to brain injury: a brief synopsis. Toxicol Pathol 28:28–30CrossRefPubMedGoogle Scholar
  109. Takamori Y, Mori T, Wakabayashi T, Nagasaka Y, Matsuzaki T, Yamada H (2009) Nestin-positive microglia in adult rat cerebral cortex. Brain Res 1270:10–18CrossRefPubMedGoogle Scholar
  110. Taupin P (2007) BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198–214CrossRefPubMedGoogle Scholar
  111. Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, Kim N, Dawe RJ, Bennett DA, Arfanakis K, Lazarov O (2019) Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell 24:1–9CrossRefGoogle Scholar
  112. van den Berge SA, van Strien ME, Korecka JA, Dijkstra AA, Sluijs JA, Kooijman L, Eggers R, De Filippis L, Vescovi AL, Verhaagen J, van de Berg WD, Hol EM (2011) The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain 134:3249–3263CrossRefPubMedGoogle Scholar
  113. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270CrossRefPubMedPubMedCentralGoogle Scholar
  114. Webster W, Shimada M, Langman J (1973) Effect of fluorodeoxyuridine, colcemid, and bromodeoxyuridine on developing neocortex of the mouse. Am J Anat 137:67–85CrossRefPubMedGoogle Scholar
  115. Wulansari N, Kim EH, Sulistio YA, Rhee YH, Song JJ, Lee SH (2017) Vitamin C-induced epigenetic modifications in donor NSCs establish midbrain marker expressions critical for cell-based therapy in Parkinson’s disease. Stem Cell Reports 9:1192–1206CrossRefPubMedPubMedCentralGoogle Scholar
  116. Yee AG, Forbes B, Cheung PY, Martini A, Burrell MH, Freestone PS, Lipski J (2019) Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta. J Neurochem 148:462–479CrossRefPubMedGoogle Scholar
  117. Young W (2009) Review of lithium effects on brain and blood. Cell Transpl 18:951–975CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeuroscienceYale University School of MedicineNew HavenUSA
  2. 2.Department of MedicineRutgers Robert Wood Johnson Medical SchoolPiscatawayUSA

Personalised recommendations