Advertisement

Brain Structure and Function

, Volume 224, Issue 6, pp 2231–2245 | Cite as

A network approach to brain form, cortical topology and human evolution

  • Emiliano BrunerEmail author
  • Borja Esteve-Altava
  • Diego Rasskin-Gutman
Original Article

Abstract

Network analysis provides a quantitative tool to investigate the topological properties of a system. In anatomy, it can be employed to investigate the spatial organization of body parts according to their contiguity and patterns of physical contact. In this study, we build a model representing the spatial adjacency of the major regions of the human brain often considered in evolutionary neuroanatomy, to analyse its topological features. Results suggest that the frontal lobe is topologically independent of the posterior regions of the brain, which in turn are more integrated and influenced by reciprocal constraints. The precentral gyrus represents a hinge between the anterior and posterior blocks. The lateral temporal cortex is particularly influenced by the neighbouring regions, while the parietal cortex is minimally constrained by the overall brain organization. Beyond the reciprocal spatial influences among cortical areas, brain form is further constrained by spatial and mechanical influence of the braincase, including bone and connective elements. The anterior fossa and the parietal bones are the elements more sensitive to the brain–braincase spatial organization. These topological properties must be properly considered when making inferences on evolutionary variations and macroscopic differences of the human brain morphology.

Keywords

Anatomical network analysis Brain morphology Paleoneurology Functional craniology 

Notes

Acknowledgements

EB is funded by the Spanish Government (PGC2018-093925-B-C31). BE-A has received financial support through the Postdoctoral Junior Leader Fellowship Programme from “la Caixa” Banking Foundation (LCF/BQ/LI18/11630002) and thanks the support of the Unidad de Excelencia María de Maeztu (MDM-2014-0370). DR-G is funded by grant BFU2015-70927-R. We are grateful to the two anonymous reviewers for their comments and suggestions. The authors also thank Transmitting Science for promoting anatomical network analysis and this research project. The authors declare no conflict of interest.

Supplementary material

429_2019_1900_MOESM1_ESM.xlsx (17 kb)
Supplementary material 1 (XLSX 16 kb)

References

  1. Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358Google Scholar
  2. Ardesch DJ, Scholtens LH, Li L, Preuss TM, Rilling JK, van den Heuvel MP (2019) Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees. Proc Natl Acad Sci USA 116:7101–7106Google Scholar
  3. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social MediaGoogle Scholar
  4. Bastir M, Rosas A (2005) Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 128:26–34Google Scholar
  5. Bastir M, Rosas A, Kuroe K (2004) Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol 123:340–350Google Scholar
  6. Bastir M, Rosas A, O’Higgins P (2006) Craniofacial levels and the morphological maturation of the human skull: spatiotemporal pattern of cranial ontogeny. J Anat 209:637–654Google Scholar
  7. Bastir M, Rosas A, Lieberman DE, O’Higgins P (2008) Middle cranial fossa and the origin of modern humans. Anat Rec 291:130–140Google Scholar
  8. Bastir M, Rosas A, Gunz P, Peña-Melian A, Manzi G, Harvati K, Kruszynski R, Stringer C, Hublin JJ (2011) Evolution of the base of the brain in highly encephalized human species. Nat Commun 2:588Google Scholar
  9. Bayly PV, Taber LA, Kroenke CD (2014) Mechanical forces in cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed Mater 29:568–581Google Scholar
  10. Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92:1170–1182Google Scholar
  11. Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Netw 23:191–201Google Scholar
  12. Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303Google Scholar
  13. Bruner E (2014) Functional craniology, human evolution, and anatomical constraints in the Neanderthal braincase. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Tokyo, pp 121–129Google Scholar
  14. Bruner E (2015) Functional craniology and brain evolution. In: Bruner E (ed) Human Paleoneurology. Springer, Cham, pp 57–94Google Scholar
  15. Bruner E (2017a) The fossil evidence of human brain evolution. In: Kaas J (ed) Evolution of nervous systems 2e, vol 4. Elsevier, Oxford, pp 63–92Google Scholar
  16. Bruner E (2017b) Language, paleoneurology, and the fronto-parietal system. Front Hum Neurosci 11:349Google Scholar
  17. Bruner E (2018a) Human paleoneurology and the evolution of the parietal cortex. Brain Behav Evol 91:136–147Google Scholar
  18. Bruner E (2018b) The brain, the braincase, and the morphospace. In: Bruner E, Ogihara N, Tanabe HC (eds) Digital endocasts. From skulls to brains. Springer, Tokyo, pp 93–114Google Scholar
  19. Bruner E (2019) Human paleoneurology: shaping cortical evolution in fossil hominids. J Comp Neurol.  https://doi.org/10.1002/cne.24591 Google Scholar
  20. Bruner E, Holloway R (2010) Bivariate approach to the widening of the frontal lobes in the genus Homo. J Hum Evol 58:138–146Google Scholar
  21. Bruner E, De la Cuétara JM, Masters M, Amano H, Ogihara N (2014) Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 8:19Google Scholar
  22. Bruner E, Amano H, de la Cuétara JM, Ogihara N (2015) The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans. J Anat 227:268–276Google Scholar
  23. Bruner E, Pereira-Pedro AS, Chen X, Rilling JK (2017a) Precuneus proportions and cortical folding: a morphometric evaluation on a racially diverse human sample. Ann Anat 211:120–128Google Scholar
  24. Bruner E, Pereira-Pedro AS, Bastir M (2017b) Patterns of morphological integration between parietal and temporal areas in the human skull. J Morphol 278:1312–1320Google Scholar
  25. Bruner E, Esteve-Altava B, Rasskin-Gutman D (2018) Networking brains: modeling spatial relationships of the cerebral cortex. In: Bruner E, Ogihara N, Tanabe HC (eds) Digital endocasts. From skulls to brains. Springer, Tokyo, pp 191–204Google Scholar
  26. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network. Anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38Google Scholar
  27. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198Google Scholar
  28. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349Google Scholar
  29. Butts CT (2009) Revisiting the foundations of network analysis. Science 325:414–416Google Scholar
  30. Caminiti R, Innocenti GM, Battaglia-Mayer A (2015) Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 56:73–96Google Scholar
  31. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583Google Scholar
  32. Chen CH, Gutierrez ED, Thompson W, Panizzon MS, Jernigan TL, Eyler LT, Fennema-Notestine C, Jak AJ, Neale MC, Franz CE, Lyons MJ, Grant MD, Fischl B, Seidman LJ, Tsuang MT, Kremen WS, Dale AM (2012) Hierarchical genetic organization of human cortical surface area. Science 335:1634–1636Google Scholar
  33. Croxson PL, Forkel SJ, Cerliani L, Thiebaut de Schotten M (2018) Structural variability across the primate brain: a cross-species comparison. Cereb Cortex 28:3829–3841Google Scholar
  34. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9Google Scholar
  35. Damasio H (2005) Human brain anatomy in computerized images. Oxford University Press, OxfordGoogle Scholar
  36. Dos Santos DA, Fratani J, Ponssa ML, Abdala V (2017) Network architecture associated with the highly specialized hindlimb of frogs. PLoS One 12:e0177819Google Scholar
  37. Esteve-Altava B (2017a) Challenges in identifying and interpreting organizational modules in morphology. J Morphol 278:960–974Google Scholar
  38. Esteve-Altava B (2017b) In search of morphological modules: a systematic review. Biol Rev 92:1332–1347Google Scholar
  39. Esteve-Altava B, Rasskin-Gutman D (2014) Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations. J Anat 225:306–316Google Scholar
  40. Esteve-Altava B, Rasskin-Gutman D (2018) Anatomical network analysis in evo-devo. In: Nuño de la Rosa L, Müller GB (eds) Evolutionary developmental biology. Springer, ChamGoogle Scholar
  41. Esteve-Altava B, Marugán-Lobón J, Botella H, Rasskin-Gutman D (2011) Network models in anatomical systems. J Anthropol Sci 89:175–184Google Scholar
  42. Esteve-Altava B, Marugán-Lobón J, Botella H, Bastir M, Rasskin-Gutman D (2013) Grist for Riedl’s Mill: a network model perspective on the integration and modularity of the human skull. J Exp Zool 320:489–500Google Scholar
  43. Freeman L (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41Google Scholar
  44. Garcia KE, Kroenke CD, Bayly PV (2019) Mechanics of cortical folding: stress, growth and stability. Phil Trans R Soc B 373:20170321Google Scholar
  45. Ghosh R, Lerman K (2011) A parametrized centrality metric for network analysis. Phys Rev 83:066118Google Scholar
  46. Ghosh R, Lerman K (2014) Rethinking centrality: the role of dynamical processes in social network analysis. Disc Cont Dyn Syst 19:1355–1372Google Scholar
  47. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863Google Scholar
  48. Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC (2015) Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc Natl Acad Sci USA 112:14799–14804Google Scholar
  49. Goriely A, Geers MGD, Holzapfel GA, Jayamohan J, Jérusalem A, Sivaloganathan S, Squier W, Van Dommelen JAW, Waters S, Kuhl E (2015) Mechanics of the brains: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 14:931–965Google Scholar
  50. Gunz P, Harvati K (2007) The Neanderthal “chignon”: variation, integration, and homology. J Hum Evol 52:262–274Google Scholar
  51. Gunz P, Tilot AK, Wittfeld K, Teumer A, Shapland CY, van Erp TGM, Dannemann M, Vernot B, Neubauer S, Guadalupe T, Fernández G, Brunner HG, Enard W, Fallon J, Hosten N, Völker U, Profico A, Di Vincenzo F, Manzi G, Kelso J, St Pourcain B, Hublin JJ, Franke B, Pääbo S, Macciardi F, Grabe HJ, Fisher SE (2019) Neandertal introgression sheds light on modern human endocranial globularity. Curr Biol 29:120–127Google Scholar
  52. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159Google Scholar
  53. Hansen TF, Solvin TM, Pavlicev M (2019) Predicting evolutionary potential: a numerical test of evolvability measures. Evolution 73:689–703Google Scholar
  54. Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol 210:411–417Google Scholar
  55. Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput Biol 2:e22Google Scholar
  56. Hofman MA (2012) Design principles of the human brain: an evolutionary perspective. Progr Brain Res 195:373–390Google Scholar
  57. Holloway RL, Broadfield DC, Yuan MS (2004) Brain endocasts: the paleoneurological evidence. Wiley, HobokenGoogle Scholar
  58. Huntenburg JM, Bazin PL, Margulies DS (2017) Large-scale gradients in human cortical organization. Trends Cogn Sci 22:21–31Google Scholar
  59. Kerkman JN, Daffertshofer A, Gollo LL, Breakspear M, Boonstra TW (2018) Network structure of the human musculoskeletal system shapes neural interactions on multiple time scales. Sci Adv 4:eaat0497Google Scholar
  60. Knight CG, Pinney JW (2009) Making the right connections: biological networks in the light of evolution. BioEssays 31:1080–1090Google Scholar
  61. Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically significant communities in networks. PLoS One 6:e18961Google Scholar
  62. Landherr A, Friedl B, Heidemann J (2010) A critical review of centrality measures in social networks. Bus Inf Syst Eng 6:371–385Google Scholar
  63. Langer N, Pedroni A, Gianotti LRR, Hänggi J, Knoch D, Jäncke L (2012) Functional brain network efficiency predicts intelligence. Hum Brain Mapp 33:1393–1406Google Scholar
  64. Lieberman DE, Ross CF, Ravosa MJ (2000) The primate cranial base: ontogeny, function, and integration. Yrb Phys Anthropol 43:117–169Google Scholar
  65. McCarthy RC (2001) Anthropoid cranial base architecture and scaling relationships. J Hum Evol 40:41–66Google Scholar
  66. Meunier D, Lambiotte R, Formito A, Ersche KD, Bullmore ET (2009) Hierarchical modularità in human brain functional networks. Front Neuroinformatics 3:37Google Scholar
  67. Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200Google Scholar
  68. Moss ML, Young RW (1960) A functional approach to craniology. Am J Phys Anthropol 18:281–292Google Scholar
  69. Murphy AC, Muldoon SF, Baker D, Lastowka A, Bennett B, Yang M, Bassett DS (2018) Structure, function, and control of the human musculoskeletal network. PLoS Biol 16:e2002811Google Scholar
  70. Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Netw 27:39–54Google Scholar
  71. Newman MEL (2018) Networks. Oxford University Press, OxfordGoogle Scholar
  72. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev 69:026113Google Scholar
  73. Pearce E, Stringer C, Dunbar RIM (2013) New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proc R Soc B 280:20130168Google Scholar
  74. Pearson A, Bruner E (2018) A preliminary survey on temporal lobes and cranial morphometrics in extant haplorrhines. Folia Primatol 89:207Google Scholar
  75. Pereira-Pedro AS, Masters M, Bruner E (2017) Shape analysis of spatial relationships between orbito-ocular and endocranial structures in modern humans and fossil hominids. J Anat 231:947–960Google Scholar
  76. Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–353Google Scholar
  77. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  78. Radinsky L (1974) The fossil evidence of anthropoid brain evolution. Am J Phys Anthropol 41:15–27Google Scholar
  79. Rasskin-Gutman D, Esteve-Altava B (2014) Connecting the dots: anatomical network analysis in morphological EvoDevo. Biol Theor 9:178–193Google Scholar
  80. Rasskin-Gutman D, Esteve-Altava B (2018) Concept of burden in evo-devo. In: Nuño de la Rosa L, Müller GB (eds) Evolutionary developmental biology. Springer, ChamGoogle Scholar
  81. Ribas GC, Yasuda A, Ribas EC, Nishikuni K, Rodrigues AJ Jr (2006) Surgical anatomy of microneurosurgical sulcal key points. Neurosurgery 59:177–210Google Scholar
  82. Richtsmeier JT, Flaherty K (2013) Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol 125:469–489Google Scholar
  83. Richtsmeier JT, Aldridge K, de Leon VB, Panchal J, Kane AA, Marsh JL, Yan P, Cole TM (2006) Phenotypic integration of neurocranium and brain. J Exp Zool 306B:360–378Google Scholar
  84. Rohen JW, Yokochi C, Lutjen-Drecoll E (2006) Color atlas of anatomy: a photographic study of the human body. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  85. Rosas A, Peña-Melián A, Garcia-Tabernero A, Bastir M, De La Rasilla M (2014) Temporal lobe sulcal pattern and the bony impressions in the middle cranial fossa: the case of the El Sidrón (Spain) Neandertal sample. Anat Rec 297:2331–2341Google Scholar
  86. Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38:317–332Google Scholar
  87. Sherwood CC, Gómez-Robles A (2017) Brain plasticity and human evolution. Ann Rev Anthropol 46:399–419Google Scholar
  88. Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106:467–482Google Scholar
  89. Smaers JB, Gómez-Robles A, Parks AN, Sherwood CC (2017) Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Curr Biol 27:714–720Google Scholar
  90. Sotero RC, Iturria-Medina Y (2011) From blood oxygenation level dependent (BOLD) signals to brain temperature maps. Bull Math Biol 73:2731–2747Google Scholar
  91. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and functions of complex brain networks. Trend Cogn Sci 8:418–425Google Scholar
  92. Tallinen T, Chung JY, Rousseau F, Girard N, Lefèvre J, Mahadevan L (2016) On the growth and form of cortical convolutions. Nat Phys 12:588–593Google Scholar
  93. Toro R (2012) On the possible shapes of the brain. Evol Biol 39:600–612Google Scholar
  94. Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15:1900–1913Google Scholar
  95. Van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE (2010) Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci 30:15915–15926Google Scholar
  96. Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318Google Scholar
  97. Van Essen DC, Dierker DL (2007) Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56:209–225Google Scholar
  98. Van Essen DC, Donahue CJ, Glasser MF (2018) Development and evolution of cerebral and cerebellar cortex. Brain Behav Evol 91:158–169Google Scholar
  99. Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50:967–976Google Scholar
  100. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442Google Scholar
  101. White TD, Folkens PA (2000) Human osteology. Academic Press, LondonGoogle Scholar
  102. Zilles K, Armstrong E, Schleicher A, Kretschmann HJ (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol 179:173–179Google Scholar
  103. Zilles K, Armstrong E, Moser KH, Schleicher A, Stephan H (1989) Gyrificationin the cerebral cortex of primates. Brain Behav Evol 34:143–150Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
  2. 2.Department of Experimental and Health SciencesInstitute of Evolutionary Biology (UPF-CSIC)BarcelonaSpain
  3. 3.Theoretical Biology Research Group, Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain

Personalised recommendations