Advertisement

Brain Structure and Function

, Volume 224, Issue 5, pp 1815–1829 | Cite as

In vivo high-resolution diffusion tensor imaging of the developing neonatal rat cortex and its relationship to glial and dendritic maturation

  • Markus Breu
  • Dominik Reisinger
  • Liangcheng Tao
  • Dan Wu
  • Yajing Zhang
  • Matthew D. Budde
  • Ali Fatemi
  • Arvind P. Pathak
  • Jiangyang ZhangEmail author
Original Article

Abstract

Diffusion tensor imaging (DTI) is increasingly utilized as a sensitive tool for studying brain maturation and injuries during the neonatal period. In this study, we acquired high resolution in vivo DTI data from neonatal rat brains from postnatal day 2 (P2) to P10 and correlated temporal changes in DTI derived markers with microstructural organization of glia, axons, and dendrites during this critical period of brain development. Group average images showed dramatic temporal changes in brain morphology, fractional anisotropy (FA) and mean diffusivity (MD). Most cortical regions showed a monotonous decline in FA and an initial increase in MD from P2 to P8 that declined slightly by P10. Qualitative histology revealed rapid maturation of the glial and dendritic networks in the developing cortex. In the cingulate and motor cortex, the decreases in FA over time significantly correlated with structural anisotropy values computed from histological sections stained with glial and dendritic markers. However, in the sensory and visual cortex, other factors probably contributed to the observed decreases in FA. We did not observe any significant correlations between FA and structural anisotropy computed from the axonal histological marker.

Keywords

Rat Cortex Development Neonatal Diffusion tensor imaging Maturation Glia 

Notes

Acknowledgements

This study is funded by National Institute of Neurological Disorders and Stroke (Grant No. R01NS102904) and National Institute of Child Health and Human Development (Grant No. R01HD074593).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Ethical approval

All experimental procedures were approved by the Animal Use and Care Committee at the Johns Hopkins University School of Medicine. This study did not involve human subjects. This work was supported by the National Institutes of Health R01HD074593 and R01NS102904.

Supplementary material

429_2019_1878_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1644 kb)

References

  1. Aggarwal M, Mori S, Shimogori T, Blackshaw S, Zhang J (2010) Three-dimensional diffusion tensor microimaging for anatomical characterization of the mouse brain. Magn Reson Med 64(1):249–261.  https://doi.org/10.1002/mrm.22426 Google Scholar
  2. Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis: I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126(3):337–389.  https://doi.org/10.1002/cne.901260302 Google Scholar
  3. Axer M, Amunts K, Grassel D, Palm C, Dammers J, Axer H, Pietrzyk U, Zilles K (2011) A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. NeuroImage 54(2):1091–1101.  https://doi.org/10.1016/j.neuroimage.2010.08.075 Google Scholar
  4. Ball G, Srinivasan L, Aljabar P, Counsell SJ, Durighel G, Hajnal JV, Rutherford MA, Edwards AD (2013) Development of cortical microstructure in the preterm human brain. Proc Natl Acad Sci USA 110(23):9541–9546.  https://doi.org/10.1073/pnas.1301652110 Google Scholar
  5. Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci USA 106(33):14108–14113.  https://doi.org/10.1073/pnas.0804650106 Google Scholar
  6. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15(7–8):456–467.  https://doi.org/10.1002/nbm.783 Google Scholar
  7. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267.  https://doi.org/10.1016/S0006-3495(94)80775-1 Google Scholar
  8. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455.  https://doi.org/10.1002/nbm.782 Google Scholar
  9. Bockhorst KH, Narayana PA, Liu R, Ahobila-Vijjula P, Ramu J, Kamel M, Wosik J, Bockhorst T, Hahn K, Hasan KM, Perez-Polo JR (2008) Early postnatal development of rat brain: in vivo diffusion tensor imaging. J Neurosci Res 86(7):1520–1528.  https://doi.org/10.1002/jnr.21607 Google Scholar
  10. Bourgeois JP, Rakic P (1993) Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci 13(7):2801–2820Google Scholar
  11. Brazel CY, Romanko MJ, Rothstein RP, Levison SW (2003) Roles of the mammalian subventricular zone in brain development. Prog Neurobiol 69(1):49–69Google Scholar
  12. Budde MD, Annese J (2013) Quantification of anisotropy and fiber orientation in human brain histological sections. Front Integr Neurosci 7:3.  https://doi.org/10.3389/fnint.2013.00003 Google Scholar
  13. Budde MD, Frank JA (2012) Examining brain microstructure using structure tensor analysis of histological sections. NeuroImage 63(1):1–10.  https://doi.org/10.1016/j.neuroimage.2012.06.042 Google Scholar
  14. Budde MD, Janes L, Gold E, Turtzo LC, Frank JA (2011) The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain 134(Pt 8):2248–2260.  https://doi.org/10.1093/brain/awr161 Google Scholar
  15. Calabrese E, Johnson GA (2013) Diffusion tensor magnetic resonance histology reveals microstructural changes in the developing rat brain. NeuroImage 79:329–339.  https://doi.org/10.1016/j.neuroimage.2013.04.101 Google Scholar
  16. Ceritoglu C, Oishi K, Li X, Chou MC, Younes L, Albert M, Lyketsos C, van Zijl PC, Miller MI, Mori S (2009) Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. NeuroImage 47(2):618–627.  https://doi.org/10.1016/j.neuroimage.2009.04.057 Google Scholar
  17. Choe AS, Stepniewska I, Colvin DC, Ding Z, Anderson AW (2012) Validation of diffusion tensor MRI in the central nervous system using light microscopy: quantitative comparison of fiber properties. NMR Biomed 25(7):900–908.  https://doi.org/10.1002/nbm.1810 Google Scholar
  18. Chuang N, Mori S, Yamamoto A, Jiang H, Ye X, Xu X, Richards LJ, Nathans J, Miller MI, Toga AW, Sidman RL, Zhang J (2011) An MRI-based atlas and database of the developing mouse brain. NeuroImage 54(1):80–89.  https://doi.org/10.1016/j.neuroimage.2010.07.043 Google Scholar
  19. Downes N, Mullins P (2014) The development of myelin in the brain of the juvenile rat. Toxicol Pathol 42(5):913–922.  https://doi.org/10.1177/0192623313503518 Google Scholar
  20. Feliciano DM, Bordey A (2013) Newborn cortical neurons: only for neonates? Trends Neurosci 36(1):51–61.  https://doi.org/10.1016/j.tins.2012.09.004 Google Scholar
  21. Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351(19):1985–1995.  https://doi.org/10.1056/NEJMra041996 Google Scholar
  22. Frank LR (2001) Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 45(6):935–939Google Scholar
  23. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, Gressens P (2015) The role of inflammation in perinatal brain injury. Nat Rev Neurol 11(4):192–208.  https://doi.org/10.1038/nrneurol.2015.13 Google Scholar
  24. Hermoye L, Saint-Martin C, Cosnard G, Lee SK, Kim J, Nassogne MC, Menten R, Clapuyt P, Donohue PK, Hua K, Wakana S, Jiang H, van Zijl PC, Mori S (2006) Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. NeuroImage 29(2):493–504.  https://doi.org/10.1016/j.neuroimage.2005.08.017 Google Scholar
  25. Huang H, Zhang J, Wakana S, Zhang W, Ren T, Richards LJ, Yarowsky P, Donohue P, Graham E, van Zijl PC, Mori S (2006) White and gray matter development in human fetal, newborn and pediatric brains. NeuroImage 33(1):27–38.  https://doi.org/10.1016/j.neuroimage.2006.06.009 Google Scholar
  26. Huang H, Yamamoto A, Hossain MA, Younes L, Mori S (2008) Quantitative cortical mapping of fractional anisotropy in developing rat brains. J Neurosci 28(6):1427–1433.  https://doi.org/10.1523/JNEUROSCI.3194-07.2008 Google Scholar
  27. Jespersen SN, Kroenke CD, Ostergaard L, Ackerman JJ, Yablonskiy DA (2007) Modeling dendrite density from magnetic resonance diffusion measurements. NeuroImage 34(4):1473–1486.  https://doi.org/10.1016/j.neuroimage.2006.10.037 Google Scholar
  28. Jespersen SN, Leigland LA, Cornea A, Kroenke CD (2012) Determination of axonal and dendritic orientation distributions within the developing cerebral cortex by diffusion tensor imaging. IEEE Trans Med Imaging 31(1):16–32.  https://doi.org/10.1109/TMI.2011.2162099 Google Scholar
  29. Johnston MV (2003) MRI for neonatal encephalopathy in full-term infants. Lancet 361(9359):713–714Google Scholar
  30. Khan AR, Cornea A, Leigland LA, Neuroimage K-SG (2015) 3D structure tensor analysis of light microscopy data for validating diffusion MRI. NeuroImage 111:192–203Google Scholar
  31. Kovacevic N, Henderson JT, Chan E, Lifshitz N, Bishop J, Evans AC, Henkelman RM, Chen XJ (2005) A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 15(5):639–645.  https://doi.org/10.1093/cercor/bhh165 Google Scholar
  32. Kroenke CD, Van Essen DC, Inder TE, Rees S, Bretthorst GL, Neil JJ (2007) Microstructural changes of the baboon cerebral cortex during gestational development reflected in magnetic resonance imaging diffusion anisotropy. J Neurosci 27(46):12506–12515.  https://doi.org/10.1523/JNEUROSCI.3063-07.2007 Google Scholar
  33. Kroenke CD, Taber EN, Leigland LA, Knutsen AK, Bayly PV (2009) Regional patterns of cerebral cortical differentiation determined by diffusion tensor MRI. Cereb Cortex 19(12):2916–2929.  https://doi.org/10.1093/cercor/bhp061 Google Scholar
  34. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480.  https://doi.org/10.1038/Nrn1119 Google Scholar
  35. Leigland LA, Budde MD, Cornea A, Kroenke CD (2013) Diffusion MRI of the developing cerebral cortical gray matter can be used to detect abnormalities in tissue microstructure associated with fetal ethanol exposure. NeuroImage 83:1081–1087.  https://doi.org/10.1016/j.neuroimage.2013.07.068 Google Scholar
  36. Limperopoulos C, Clouchoux C (2009) Advancing fetal brain MRI: targets for the future. Semin Perinatol 33(4):289–298.  https://doi.org/10.1053/j.semperi.2009.04.002 Google Scholar
  37. Lodygensky GA, Vasung L, Sizonenko SV, Huppi PS (2010) Neuroimaging of cortical development and brain connectivity in human newborns and animal models. J Anat 217(4):418–428.  https://doi.org/10.1111/j.1469-7580.2010.01280.x Google Scholar
  38. McKinstry RC, Mathur A, Miller JH, Ozcan A, Snyder AZ, Schefft GL, Almli CR, Shiran SI, Conturo TE, Neil JJ (2002a) Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 12(12):1237–1243Google Scholar
  39. McKinstry RC, Miller JH, Snyder AZ, Mathur A, Schefft GL, Almli CR, Shimony JS, Shiran SI, Neil JJ (2002b) A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology 59(6):824–833Google Scholar
  40. Ment LR, Hirtz D, Huppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8(11):1042–1055.  https://doi.org/10.1016/S1474-4422(09)70257-1 Google Scholar
  41. Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54(3):357–369.  https://doi.org/10.1016/j.neuron.2007.04.019 Google Scholar
  42. Miller S, Ferriero D, Barkovich AJ, Silverstein F (2002) Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 59(10):1663 (author reply 1663–1664) Google Scholar
  43. Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31(5):727–741Google Scholar
  44. Mollink J, Kleinnijenhuis M, Cappellen van Walsum AV, Sotiropoulos SN, Cottaar M, Mirfin C, Heinrich MP, Jenkinson M, Pallebage-Gamarallage M, Ansorge O, Jbabdi S, Miller KL (2017) Evaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imaging. NeuroImage 157:561–574.  https://doi.org/10.1016/j.neuroimage.2017.06.001 Google Scholar
  45. Mori S, van Zijl PC (1998) A motion correction scheme by twin-echo navigation for diffusion-weighted magnetic resonance imaging with multiple RF echo acquisition. Magn Reson Med 40(4):511–516Google Scholar
  46. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539.  https://doi.org/10.1016/j.neuron.2006.08.012 Google Scholar
  47. Mori S, Itoh R, Zhang J, Kaufmann WE, van Zijl PC, Solaiyappan M, Yarowsky P (2001) Diffusion tensor imaging of the developing mouse brain. Magn Reson Med 46(1):18–23Google Scholar
  48. Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR, McKinstry RC (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221(2):349–358.  https://doi.org/10.1148/radiol.2212001702 Google Scholar
  49. Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BC, Conturo TE (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209(1):57–66.  https://doi.org/10.1148/radiology.209.1.9769812 Google Scholar
  50. Neil J, Miller J, Mukherjee P, Huppi PS (2002) Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed 15(7–8):543–552.  https://doi.org/10.1002/nbm.784 Google Scholar
  51. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409(6821):714–720.  https://doi.org/10.1038/35055553 Google Scholar
  52. Northington FJ (2006) Brief update on animal models of hypoxic-ischemic encephalopathy and neonatal stroke. ILAR J 47(1):32–38Google Scholar
  53. Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, New YorkGoogle Scholar
  54. Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10(10):724–735.  https://doi.org/10.1038/nrn2719 Google Scholar
  55. Rose J, Cahill-Rowley K, Vassar R, Yeom KW, Stecher X, Stevenson DK, Hintz SR, Barnea-Goraly N (2015) Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18–22 month of age: an MRI and DTI study. Pediatr Res 78(6):700–708.  https://doi.org/10.1038/pr.2015.157 Google Scholar
  56. Roze E, Benders MJ, Kersbergen KJ, van der Aa NE, Groenendaal F, van Haastert IC, Leemans A, de Vries LS (2015) Neonatal DTI early after birth predicts motor outcome in preterm infants with periventricular hemorrhagic infarction. Pediatr Res 78(3):298–303.  https://doi.org/10.1038/pr.2015.94 Google Scholar
  57. Salo RA, Miettinen T, Laitinen T, Grohn O, Sierra A (2017) Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat—histological validation with Fourier-based analysis. NeuroImage 152:221–236.  https://doi.org/10.1016/j.neuroimage.2017.03.003 Google Scholar
  58. Salo RA, Belevich I, Manninen E, Jokitalo E, Grohn O, Sierra A (2018) Quantification of anisotropy and orientation in 3D electron microscopy and diffusion tensor imaging in injured rat brain. NeuroImage 172:404–414.  https://doi.org/10.1016/j.neuroimage.2018.01.087 Google Scholar
  59. Schilling K, Janve V, Gao Y, Stepniewska I, Landman BA, Anderson AW (2016) Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI. NeuroImage 129:185–197Google Scholar
  60. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16.  https://doi.org/10.1016/j.pneurobio.2013.04.001 Google Scholar
  61. Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ (2009) Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 62(1):26–34.  https://doi.org/10.1002/mrm.21977 Google Scholar
  62. Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62(1):1–35Google Scholar
  63. Sizonenko SV, Camm EJ, Garbow JR, Maier SE, Inder TE, Williams CE, Neil JJ, Huppi PS (2007) Developmental changes and injury induced disruption of the radial organization of the cortex in the immature rat brain revealed by in vivo diffusion tensor MRI. Cereb Cortex 17(11):2609–2617.  https://doi.org/10.1093/cercor/bhl168 Google Scholar
  64. Sun SW, Neil JJ, Song SK (2003) Relative indices of water diffusion anisotropy are equivalent in live and formalin-fixed mouse brains. Magn Reson Med 50(4):743–748.  https://doi.org/10.1002/mrm.10605 Google Scholar
  65. Sun SW, Liang HF, Le TQ, Armstrong RC, Cross AH, Song SK (2006) Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. NeuroImage 32(3):1195–1204.  https://doi.org/10.1016/j.neuroimage.2006.04.212 Google Scholar
  66. Takahashi E, Dai G, Rosen GD, Wang R, Ohki K, Folkerth RD, Galaburda AM, Wedeen VJ, Ellen Grant P (2011) Developing neocortex organization and connectivity in cats revealed by direct correlation of diffusion tractography and histology. Cereb Cortex 21(1):200–211.  https://doi.org/10.1093/cercor/bhq084 Google Scholar
  67. Thompson CL, Ng L, Menon V, Martinez S, Lee CK, Glattfelder K, Sunkin SM, Henry A, Lau C, Dang C, Garcia-Lopez R, Martinez-Ferre A, Pombero A, Rubenstein JLR, Wakeman WB, Hohmann J, Dee N, Sodt AJ, Young R, Smith K, Nguyen TN, Kidney J, Kuan L, Jeromin A, Kaykas A, Miller J, Page D, Orta G, Bernard A, Riley Z, Smith S, Wohnoutka P, Hawrylycz MJ, Puelles L, Jones AR (2014) A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron 83(2):309–323.  https://doi.org/10.1016/j.neuron.2014.05.033 Google Scholar
  68. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48(4):577–582.  https://doi.org/10.1002/mrm.10268 Google Scholar
  69. van der Aa NE, Northington FJ, Stone BS, Groenendaal F, Benders MJ, Porro G, Yoshida S, Mori S, de Vries LS, Zhang J (2013) Quantification of white matter injury following neonatal stroke with serial DTI. Pediatr Res 73(6):756–762.  https://doi.org/10.1038/pr.2013.45 Google Scholar
  70. Vannucci RC, Vannucci SJ (2005) Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci 27(2–4):81–86.  https://doi.org/10.1159/000085978 Google Scholar
  71. Wang X, Studholme C, Grigsby PL, Frias AE, Cuzon Carlson VC, Kroenke CD (2017) Folding, but not surface area expansion, is associated with cellular morphological maturation in the fetal cerebral cortex. J Neurosci 37(8):1971–1983.  https://doi.org/10.1523/JNEUROSCI.3157-16.2017 Google Scholar
  72. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54(6):1377–1386.  https://doi.org/10.1002/mrm.20642 Google Scholar
  73. Yoshida S, Oishi K, Faria AV, Mori S (2013) Diffusion tensor imaging of normal brain development. Pediatr Radiol 43(1):15–27.  https://doi.org/10.1007/s00247-012-2496-x Google Scholar
  74. Zanghi CN, Jevtovic-Todorovic V (2017) A holistic approach to anesthesia-induced neurotoxicity and its implications for future mechanistic studies. Neurotoxicol Teratol 60:24–32.  https://doi.org/10.1016/j.ntt.2016.12.004 Google Scholar
  75. Zecevic N, Bourgeois JP, Rakic P (1989) Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Brain Res Dev Brain Res 50(1):11–32Google Scholar
  76. Zhang J, Richards LJ, Yarowsky P, Huang H, van Zijl PC, Mori S (2003) Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. NeuroImage 20(3):1639–1648Google Scholar
  77. Zhang J, Jones MV, McMahon MT, Mori S, Calabresi PA (2011) In vivo and ex vivo diffusion tensor imaging of cuprizone-induced demyelination in the mouse corpus callosum. Magn Reson Med.  https://doi.org/10.1002/mrm.23032 Google Scholar
  78. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4):1000–1016.  https://doi.org/10.1016/j.neuroimage.2012.03.072 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Markus Breu
    • 1
    • 2
    • 4
  • Dominik Reisinger
    • 1
    • 2
    • 4
  • Liangcheng Tao
    • 3
  • Dan Wu
    • 3
  • Yajing Zhang
    • 3
  • Matthew D. Budde
    • 5
  • Ali Fatemi
    • 1
    • 2
  • Arvind P. Pathak
    • 3
  • Jiangyang Zhang
    • 6
    Email author
  1. 1.Division of NeurogeneticsKennedy Krieger InstituteBaltimoreUSA
  2. 2.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of RadiologyJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
  5. 5.Department of NeurosurgeryMedical College of WisconsinMilwaukeeUSA
  6. 6.Department of RadiologyNew York University School of MedicineNew YorkUSA

Personalised recommendations